11£®ÉèÏòÁ¿$\overrightarrow{a}$¡¢$\overrightarrow{b}$Âú×ã|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1£¬ÇÒ|3$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{7}$£®
£¨1£©Çó$\overrightarrow{a}$Óë$\overrightarrow{b}$¼Ð½ÇµÄ´óС£»
£¨2£©Çó$\overrightarrow{a}$+$\overrightarrow{b}$Óë$\overrightarrow{b}$¼Ð½ÇµÄ´óС£»
£¨3£©Çó$\frac{|3\overrightarrow{a}+\overrightarrow{b}|}{|3\overrightarrow{a}-\overrightarrow{b}|}$µÄÖµ£®

·ÖÎö £¨1£©ÔËÓÃÏòÁ¿µÄƽ·½¼´ÎªÄ£µÄƽ·½ºÍÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨ÒåºÍ¼Ð½Ç·¶Î§£¬¼´¿ÉÇóµÃ¼Ð½Ç£»
£¨2£©ÔËÓÃÏòÁ¿µÄ¼Ð½Ç¹«Ê½£¬½áºÏÏòÁ¿µÄƽ·½¼´ÎªÄ£µÄƽ·½£¬¼ÆËã¼´¿ÉµÃµ½¼Ð½Ç£»
£¨3£©ÔËÓÃÏòÁ¿Ä£µÄƽ·½¼´ÎªÏòÁ¿µÄƽ·½£¬¼ÆËã¼´¿ÉµÃµ½ËùÇóÖµ£®

½â´ð ½â£º£¨1£©|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1£¬ÇÒ|3$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{7}$£¬
¼´ÓУ¨3$\overrightarrow{a}$-2$\overrightarrow{b}$£©2=7£¬
¼´9${\overrightarrow{a}}^{2}$-12$\overrightarrow{a}•\overrightarrow{b}$+4${\overrightarrow{b}}^{2}$=7£¬
9-12¡Á1¡Ácos£¼$\overrightarrow{a}$£¬$\overrightarrow{b}$£¾+4=7£¬
¼´ÓÐcos£¼$\overrightarrow{a}$£¬$\overrightarrow{b}$£¾=$\frac{1}{2}$£¬
ÓÉ0¡Ü£¼$\overrightarrow{a}$£¬$\overrightarrow{b}$£¾¡Ü¦Ð£¬
¿ÉµÃ$\overrightarrow{a}$Óë$\overrightarrow{b}$¼Ð½ÇΪ$\frac{¦Ð}{3}$£»
£¨2£©ÓÉ£¨$\overrightarrow{a}+\overrightarrow{b}$£©•$\overrightarrow{b}$=$\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=$\frac{1}{2}$+1=$\frac{3}{2}$£¬
|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+2\overrightarrow{a}•\overrightarrow{b}}$=$\sqrt{1+1+1}$=$\sqrt{3}$£¬
Ôòcos£¼$\overrightarrow{a}$+$\overrightarrow{b}$£¬$\overrightarrow{b}$£¾=$\frac{£¨\overrightarrow{a}+\overrightarrow{b}£©•\overrightarrow{b}}{|\overrightarrow{a}+\overrightarrow{b}|•|\overrightarrow{b}|}$=$\frac{\frac{3}{2}}{\sqrt{3}}$=$\frac{\sqrt{3}}{2}$£¬
ÓÉÓÚ0¡Ü£¼$\overrightarrow{a}$+$\overrightarrow{b}$£¬$\overrightarrow{b}$£¾¡Ü¦Ð£¬
¼´ÓÐ$\overrightarrow{a}$+$\overrightarrow{b}$Óë$\overrightarrow{b}$¼Ð½ÇΪ$\frac{¦Ð}{6}$£»
£¨3£©|3$\overrightarrow{a}+\overrightarrow{b}$|2=9${\overrightarrow{a}}^{2}$+6$\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=9+6¡Á$\frac{1}{2}$+1=13£¬
¼´ÓÐ|3$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{13}$£¬
|3$\overrightarrow{a}$-$\overrightarrow{b}$|2=9${\overrightarrow{a}}^{2}$-6$\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=9-6¡Á$\frac{1}{2}$+1=7£¬
¼´ÓÐ|3$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{7}$£¬
¹Ê$\frac{|3\overrightarrow{a}+\overrightarrow{b}|}{|3\overrightarrow{a}-\overrightarrow{b}|}$=$\frac{\sqrt{13}}{\sqrt{7}}$=$\frac{\sqrt{91}}{7}$£®

µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨ÒåºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÏòÁ¿µÄƽ·½¼´ÎªÄ£µÄƽ·½£¬Í¬Ê±¿¼²éÏòÁ¿µÄ¼Ð½Ç¹«Ê½£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®µÈ²îÊýÁÐ{an}ÖУ¬Ç°nÏîºÍΪSn=a£¬Ç°2nÏîºÍS2n=b£¬Ç°3nÏîºÍS3n=3b-3a£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=$\frac{sin2x+cos2x+1}{2cosx}$£®
£¨1£©Çóf£¨x£©µÄ¶¨ÒåÓòºÍÖµÓò£»
£¨2£©Èô¦Á¡Ê£¨-$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{4}$£©£¬ÇÒf£¨¦Á£©=$\frac{3\sqrt{2}}{5}$£¬Çócos2¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÊýÁÐ{an}ÖУ¬a1=1£¬an=$\frac{2{a}_{n-1}}{2+{a}_{n-1}}$£¨n¡Ý2£©£¬Çóa2£¬a3£¬a4£¬a5£¬²¢¹éÄɳöan£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®¼ÆËã${¡Ò}_{0}^{1}$£¨x+1£©exdx=e£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªf£¨x£©=xloga£¨x-2£©£¬Çóf¡ä£¨x£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ABÊÇÔ²OµÄÖ±¾¶£¬PAÖ±Ô²OËùÔ򵀮½Ã棬CÊÇÔ²OÉϵĵ㣮
£¨1£©ÇóÖ¤£ºÆ½ÃæPAC¡ÍÆ½ÃæPBC£®
£¨2£©ÉèQΪPAµÄÖе㣬GΪ¡÷AOCµÄÖØÐÄ£¬ÇóÖ¤£ºQG¡ÎÆ½ÃæPBC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÈçͼËùʾ£¬AMÊÇ¡÷ABCµÄBC±ßÉϵÄÖÐÏߣ¬ÊÔ˵Ã÷£ºAB2+AC2=2£¨AM2+BM2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®PÊDZ߳¤Îª2µÄÕý·½ÐÎABCDÍâÒ»µã£¬PD¡ÍÃæAC£¬O¡¢E¡¢F·Ö±ðÊÇAC¡¢PA¡¢PBÖе㣮
£¨1£©ÇóÖ¤£ºÃæEFO¡ÎÃæPDC£»
£¨2£©ÇóOEµ½ÃæPDCµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸