精英家教网 > 高中数学 > 题目详情
1.等差数列{an}中,前n项和为Sn=a,前2n项和S2n=b,前3n项和S3n=3b-3a.

分析 数列{an}是等差数列,则前n项和为Sn,S2n-Sn,S3n-S2n组成新的等差数列,即可得出.

解答 解:∵数列{an}是等差数列,
∴前n项和为Sn,S2n-Sn,S3n-S2n组成新的等差数列,
∴2(S2n-Sn)=(S3n-S2n)+Sn
∴2(b-a)=(S3n-b)+a,
解得S3n=3b-3a.
故答案为:3b-3a.

点评 本题考查了等差数列的前n项和的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,A,B,C,D四点共圆,BC与AD的延长线交于点E,点F在BA的延长线上.
(1)若EA=2ED,EB=3EC,求$\frac{AB}{CD}$的值;
(2)若EF∥CD,求证:线段FA,FE,FB成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.安排甲,乙,丙,丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙,丙,丁每人参加一天,那么甲连续三天参加活动的概率为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如果X~B(15,$\frac{1}{4}$),则使P(X=k)取最大值的k的值为(  )
A.3B.4C.5D.3或4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解不等式:(a+1)x2+ax-1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点P和点Q是曲线y=x2-2x-3上的两点,且点P的横坐标是1,点Q的横坐标是4,求:
(1)割线PQ的斜率;
(2)点P处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.等比数列{an}中,a1=1,a10=2,则log2a1+log2a2+…+log2a10=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow{a}$=(m,cos2x),$\overrightarrow{b}$=(sin2x,n),设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,且y=f(x)的图象过点($\frac{π}{12}$,$\sqrt{3}$)和点($\frac{2π}{3}$,-2)求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,且|3$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{7}$.
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$夹角的大小;
(2)求$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{b}$夹角的大小;
(3)求$\frac{|3\overrightarrow{a}+\overrightarrow{b}|}{|3\overrightarrow{a}-\overrightarrow{b}|}$的值.

查看答案和解析>>

同步练习册答案