精英家教网 > 高中数学 > 题目详情
12.安排甲,乙,丙,丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙,丙,丁每人参加一天,那么甲连续三天参加活动的概率为$\frac{1}{5}$.

分析 由题意,所有情况有${A}_{6}^{3}$=120种,其中甲连续三天参加活动,有$4{A}_{3}^{3}$=24种,即可求出甲连续三天参加活动的概率.

解答 解:由题意,所有情况有${A}_{6}^{3}$=120种,其中甲连续三天参加活动,有$4{A}_{3}^{3}$=24种,
∴甲连续三天参加活动的概率为$\frac{24}{120}$=$\frac{1}{5}$,
故答案为:$\frac{1}{5}$.

点评 本题考查概率的计算,确定基本事件的个数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.“?x∈R,x2+ax+1≥0成立”是“|a|≤2”的(  )
A.充分必要条件B.必要而不充分条件
C.充分而不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直三棱柱ABC-A1B1C1中,AB=AC,D,E为棱BC,A1C1的中点

(1)证明:平面ADC1⊥平面BCC1B1
(2)证明:C1D∥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):
(1)y=4sin$\frac{1}{2}$x,x∈R;
(2)y=$\frac{1}{2}$cos3x,x∈R;
(3)y=3sin(2x+$\frac{π}{6}$),x∈R);
(4)y=2cos($\frac{1}{2}$x-$\frac{1}{4}$π),x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前n项和为Sn,a1=2,且Sn=λnan+1(λ为常数且λ≠1).
(1)求λ的值;
(2)若bn=${(\frac{1}{2})}^{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知tanα=-2,求$\frac{4sinα-2cosα}{5sinα+3cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四个结论:
①若a、b∈[0,1],则不等式a2+b2≤1成立的概率为$\frac{π}{4}$;
②由曲线y=x3与y=$\root{3}{x}$所围成的封闭图形的面积为0.5;
③已知随机变量ξ服从正态分布N(3,σ2),若P(ξ≤5)=m,则P(ξ≤1)=1-m;
④($\sqrt{x}$+$\frac{1}{2\sqrt{x}}$)8的展开式中常数项为$\frac{35}{8}$.
其中正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等差数列{an}中,前n项和为Sn=a,前2n项和S2n=b,前3n项和S3n=3b-3a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{sin2x+cos2x+1}{2cosx}$.
(1)求f(x)的定义域和值域;
(2)若α∈(-$\frac{π}{4}$,$\frac{π}{4}$),且f(α)=$\frac{3\sqrt{2}}{5}$,求cos2α的值.

查看答案和解析>>

同步练习册答案