精英家教网 > 高中数学 > 题目详情
18.直三棱柱ABC-A1B1C1中,B1C1=A1C1,AC1⊥A1B,M,N分别为A1B1,AB的中点,
求证:(1)平面B1CN∥平面AMC1
      (2)AM⊥A1B.

分析 (1)先在四边形AA1B1B中,利用一组对边平行且相等证出四边形B1NAM是平行四边形,从而B1N∥AM,再结合直线与平面平行的判定定理,可得直线B1N∥平面AMC1,再用同样的方法证出CN∥平面AMC1,最后利用平面与平面平行的判定定理,可以证出平面AMC1∥平面NB1C;
(2)先根据直三棱柱的性质,利用线面垂直证出C1M⊥BB1,结合等腰三角形A1B1C1中,中线C1M⊥A1B1,利用直线与平面垂直的判定定理,证出C1M⊥平面AA1B1B,从而得到直线C1M⊥A1B,再结合已知条件AC1⊥A1B,得到A1B⊥平面AC1M,结合AM?平面AC1M,最终得到A1B⊥AM.

解答 证明(1)∵M,N分别为A1B1,AB中点,
∴B1M∥NA且B1M=NA,
∴四边形B1NAM是平行四边形
∴B1N∥AM
又∵AM?平面AMC,B1N?平面AMC1
∴B1N∥平面AMC1
连接MN,
∵矩形BB1A1A中,M、N分别是A1B1、AB的中点
∴BB1∥MN且BB1=MN
∵BB1∥CC1且BB1=CC1
∴四边形CC1MN是平行四边形,
∴MC1∥CN,
∵MC1?平面AMC,CN?平面AMC1
∴CN∥平面AMC1
∵CN?平面B1CN,B1N?平面B1CN,CN∩B1N=N,
∴平面B1CN∥平面AMC1
(2)∵三棱柱ABC-A1B1C1是直三棱柱,
BB1⊥平面A1B1C1,C1M?平面A1B1C1
∴C1M⊥BB1
又∵B1C1=A1C1,M为A1B1中点,
∴C1M⊥A1B1
∵A1B1∩BB1=B1,A1B1、BB1?平面AA1B1B
∴C1M⊥平面AA1B1B,
∵A1B?平面AA1B1B,
∴C1M⊥A1B,
又∵AC1⊥A1B,C1M∩AC1=C1,C1M、AC1?平面AC1M,
∴A1B⊥平面AC1M,
∵AM?平面AC1M,
∴A1B⊥AM.

点评 本题在一个特殊的直三棱柱中,通过证明平面与平面平行和两条异面直线互相垂直,着重考查了面面平行的判定定理和线面垂直的判定与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.从8名教师中选派4人去参加一个研讨会,其中教师甲是领队必须去,而乙、丙两位教师不能同去,则不同的选派方法有30种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.平移坐标轴,使得抛物线y=x2-4x-3的顶点位于新坐标系x′O′y′的坐标原点,对称轴为y′轴,写出该抛物线在新坐标系中的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.定义在R上的函数f(x)=ax2+bx2+cx+3同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数;
②f′(x)是偶函数;
③f(x)的图象在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=x3-3x+8,则曲线y=f(x)在点(2,f(2))处的切线斜率为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求异面直线OC1与AB1所成的角的度数;
(2)证明:面C1OD∥面AB1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.证明:如果在一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解不等式:5-x>7|x+1|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则(  )
A.平面α与平面β所成的(锐)二面角为45°
B.平面α与平面β垂直
C.平面α与平面β平行
D.平面α与平面β所成的(锐)二面角为60°

查看答案和解析>>

同步练习册答案