精英家教网 > 高中数学 > 题目详情
8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线的斜率为-2,则C的离心率e=(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{\sqrt{5}}{2}$C.2D.$\sqrt{5}$

分析 求出双曲线的渐近线方程,可得b=2a,由a,b,c的关系和离心率公式计算即可得到所求值.

解答 解:双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{b}{a}$x,
由题意可得-$\frac{b}{a}$=-2,
即有b=2a,
c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$a,
即有e=$\frac{c}{a}$=$\sqrt{5}$.
故选:D.

点评 本题考查双曲线的离心率的求法,注意运用渐近线方程,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.求数列{$\frac{2n-3}{{2}^{n-3}}$}前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线y=$\frac{b}{a}$x的垂直的直线l交双曲线于A,B两点,若向量$\overrightarrow{OA}$+$\overrightarrow{OB}$与$\overrightarrow{m}$=(9,-$\frac{1}{3}$)平行,则双曲线C的离心率等于 (  )
A.$\frac{\sqrt{10}}{3}$B.$\frac{\sqrt{14}}{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示,双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,左、右顶点为A,B过F作x轴的垂线与双曲线交于C,D两点,若AC⊥BD,则该双曲线的离心率等于(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,已知四边形ABCD中,AB=CD=1,AD=$\sqrt{2}$BC=2,∠A+∠C=$\frac{3π}{4}$.则BD的长为$\frac{\sqrt{65}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,过F1的直线与双曲线C的右支交于点P,若线段F1P的中点Q恰好在双曲线C的一条渐近线,且$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$=0,则双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知F是双曲线C:x2-$\frac{{y}^{2}}{8}$=1的右焦点,若P是C的左支上一点,A(0,6$\sqrt{6}$)是y轴上一点,则△APF周长的最小值为32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线以锐角△ABC的顶点B,C为焦点,且经过点A,若△ABC内角的对边分别为a、b、c,且a=2,b=3,$\frac{csinA}{a}$=$\frac{\sqrt{3}}{2}$,则此双曲线的离心率为(  )
A.$\frac{3+\sqrt{7}}{2}$B.$\frac{3-\sqrt{7}}{2}$C.3-$\sqrt{7}$D.3+$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2+cosα}\\{y=sinα}\end{array}\right.$ (α为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin($θ+\frac{π}{4}$)=2$\sqrt{2}$.
(I)求曲线C与直线l在该直角坐标系下的普通方程;
(Ⅱ)动点A在曲线C上,动点B在直线l上,定点P(-1,1),求|PB|+|PA|的最小值.

查看答案和解析>>

同步练习册答案