精英家教网 > 高中数学 > 题目详情
7.已知f(x)=$\left\{\begin{array}{l}{1+x,x≤0}\\{lo{g}_{2}({x}^{2}+2x+a),x>0}\end{array}\right.$,其中a>0,当a=2且f(x0)=1时,x0=0;若函数f(x)的值域为R,则实数a的取值范围是(0,2].

分析 当a=2时,f(x)=$\left\{\begin{array}{l}1+x,x≤0\\ lo{g}_{2}({x}^{2}+2x+2),x>0\end{array}\right.$,分类讨论满足f(x0)=1的x0值,可得答案;函数f(x)的值域为R,则当x=0时,函数y=${{x}_{\;}}^{2}+2{x}_{\;}+a$的值0<a≤2.

解答 解:当a=2时,f(x)=$\left\{\begin{array}{l}1+x,x≤0\\ lo{g}_{2}({x}^{2}+2x+2),x>0\end{array}\right.$,
若x0≤0,则f(x0)=1+x0=1,
解得:x0=0,
若x0>0,则f(x0)=${log}_{2}({{x}_{0}}^{2}+2{x}_{0}+2)$=1,
即${{x}_{0}}^{2}+2{x}_{0}+2=2$,
解得:x0=0(舍去),或x0=-2(舍去),
综上,当a=2且f(x0)=1时,x0=0;
当x≤0时,则f(x)=1+x≤1,
当x>0时,则f(x)=${log}_{2}({{x}_{\;}}^{2}+2{x}_{\;}+a)$,
若函数f(x)的值域为R,
则当x=0时,函数y=${{x}_{\;}}^{2}+2{x}_{\;}+a$的值0<a≤2,
即实数a的取值范围是(0,2]
故答案为:0,(0,2]

点评 本题考查的知识点是分段函数的应用,二次函数的图象和性质,对数函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.某茶馆为了了解热茶销售量y(杯)与气温x(℃)之间的关系,随机统计了某4天卖出的热茶的杯数与当天气温,并制作了对照表:
气温(℃)181310-1
杯数24343864
(1)根据表中数据,确定销售量y(杯)与气温x(℃)之间是否具有线性相关关系;
(2)若具有线性相关关系,求出销售量y(杯)与气温x(℃)的线性回归方程;
(3)预测当气温为20℃时,热茶约能销售多少杯?
(回归系数$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(0,1),且离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若直线l:y=k(x-1)+1与椭圆E交于不同两点M,N,线段MN的中点为P,O为坐标原点,且直线OP的斜率存在,求直线l与直线PO的斜率之积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.4个不同的小球放入编号为1、2、3、4的四个盒子中,恰有一个空盒子的概率为$\frac{9}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,c=2,a2=4b-4,则a=$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.现有三本相同的语文书和一本数学书,分发给三个学生,每个学生至少分得一本,问这样的分法有(  )种.
A.36B.9C.18D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.△ABC的三内角A,B,C的对边分别是a,b,c,则“a2+b2<c2”是“△ABC为钝角三角形”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,点P(0,2)关于直线y=-x的对称点在椭圆M上,且|F1F2|=2$\sqrt{3}$
(1)求椭圆M的方程;
(2)如图,椭圆M的上、下顶点分别为A,B过点P的直线l与椭圆M相交于两个不同的点C,D(C在线段PD之间).
(ⅰ)求$\overrightarrow{OC}$•$\overrightarrow{OD}$的取值范围;
(ⅱ)当AD与BC相交于点Q时,试问:点Q的纵坐标是否是定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.大楼的顶上有一座电视塔,高20米,在地面某处测得塔顶的仰角为45°,塔底的仰角为30°,求此大楼的高度(保留两位小数).

查看答案和解析>>

同步练习册答案