精英家教网 > 高中数学 > 题目详情
4.设集合A={x||x+1|<3},集合B={x|x2-x-6≤0},则A∩B=(  )
A.{x|2≤x≤3}B.{x|-2≤x≤3}C.{x|-2≤x<2}D.{x|-4<x≤3}

分析 分别求出关于A、B的不等式,求出A、B的交集即可.

解答 解:A={x||x+1|<3}={x|-4<x<2},
B={x|x2-x-6≤0}={x|-2≤x≤3},
则A∩B={x|-2≤x<2},
故选:C.

点评 本题考查了集合的交集的运算,考查不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=cosx•sin$({x+\frac{π}{3}})$-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)单调增区间;
(3)求f(x)对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{3}$sin2x-2cos2x-a在区间[-$\frac{π}{12}$,$\frac{π}{2}$]上的最大值为2.
(1)求函数f(x)在区间[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域;
(2)设$α,β∈({0,\frac{π}{2}}),f({\frac{1}{2}α+\frac{π}{12}})=\frac{10}{13},f({\frac{1}{2}β+\frac{π}{3}})=\frac{6}{5}$,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知M是关于x的不等式x2+(a-4)x-(a+1)(2a-3)<0的解集,且M中的一个元素是0,求实数a的取值范围,并用a表示出M.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若α为第三象限,则$\frac{cosα}{\sqrt{1-si{n}^{2}α}}$+$\frac{2sinα}{\sqrt{1-co{s}^{2}α}}$=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-2$\overrightarrow{b}$|=1,则(2$\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$+2$\overrightarrow{b}$)=(  )
A.-1B.4C.9D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C的极坐标方程为${ρ^2}=\frac{9}{{{{cos}^2}θ+9{{sin}^2}θ}}$,以极点为平面直角坐标系的原点,极轴为x轴的正半轴建立平面直角坐标系.
(1)求曲线C的普通方程;
(2)A、B为曲线C上两个点,若OA⊥OB,求$\frac{1}{{|OA{|^2}}}+\frac{1}{{|OB{|^2}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知M={x|1<x<3},N={x|x2-6x+8≤0}.
(1)设全集U=R,定义集合运算△,使M△N=M∩(∁UN),求M△N和N△M;
(2)若H={x||x-a|≤2},按(1)的运算定义求:(N△M)△H.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知p:?x∈R,cos2x-sinx+2≤m;q:函数y=($\frac{1}{3}$)${\;}^{2{x}^{2}-mx+2}$在[2,+∞)上单调递减,若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案