精英家教网 > 高中数学 > 题目详情
20.如图,在△ABC中,CA=2,CB=1,CD是AB边上的中线.
(Ⅰ)求证:sin∠BCD=2sin∠ACD;
(Ⅱ)若∠ACD=30°,求AB的长.

分析 (Ⅰ)在△DBC中,由正弦定理得:$\frac{BC}{sin∠CDB}=\frac{BD}{sin∠BCD}$,在△ACD中,由正弦定理得$\frac{AC}{sin∠CDA}=\frac{AD}{sin∠ACD}$,
sin∠ADC=sin∠BDC,AD=DB,AC=2BC,得sin∠BCD=2sin∠ACD;
(Ⅱ)由sin∠BCD=2sin∠ACD=1,得∠BCD=90°,∠ACB=120°,
在△ABC中由余弦定理求得AB

解答 解:(Ⅰ)在△DBC中,由正弦定理得:$\frac{BC}{sin∠CDB}=\frac{BD}{sin∠BCD}$,在△ACD中,由正弦定理得$\frac{AC}{sin∠CDA}=\frac{AD}{sin∠ACD}$,
即BCsin∠BCD=DBsin∠CBD,ACsin∠ACD=ADsin∠CDA.
∵sin∠ADC=sin∠BDC
又∵CD是AB边上的中线且AC=2BC,∴sin∠BCD=2sin∠ACD;
(Ⅱ)∵∠ACD=30°,由(Ⅰ)sin∠BCD=2sin∠ACD=1,即∠BCD=90°,∴∠ACB=120°,
由余弦定理$AB=\sqrt{A{C^2}+B{C^2}-2AC•BCcos∠ACB}=\sqrt{4+1+2}=\sqrt{7}$.

点评 本题考查了正余弦定理在解三角形中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知sinθ=2cosθ,则tan2θ的值为-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一幅广告印刷品的画面(矩形,如图①阴影部分)面积6m2,它的两边都留有宽为0.15m的空白,顶部和底部都留有宽为0.1m的空白
(1)如何选择纸张的尺寸,才能使纸张的用量最少?
(2)如图②,将此广告张贴在墙上,其画面(不包含空白)的最高点A处离地面4m,最低点B处离地面2m,若从地面1.5m的C处观赏它,则离墙多远是,视角θ最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.计算:${∫}_{1}^{2}$(ex-$\frac{1}{x}$)dx=e2-e-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知如图为f(x)=msin(ωx+φ)+n,m>0,ω>0的图象.
(1)求f(x)的解析式;
(2)在△ABC中,内角A,B,C的对边分别为a,b,c,满足$a=\sqrt{3},f(A)=1+\sqrt{3}$,求△ABC的周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是$\frac{1}{2}$外,其余每局比赛甲队获胜的概率都是$\frac{2}{3}$.假设各局比赛结果相互独立.
(1)分别求甲队以3:0,3:1,3:2胜利的概率;
(2)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分.求乙队得分X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,六棱锥P-ABCDEF的底面是边长为1的正六边形,PA⊥底面ABCDEF.
(1)求证:平面PAC⊥平面PCD;
(2)若直线PC与平面PDE所成角的正弦值为$\frac{1}{4}$,求六棱锥P-ABCDEF高的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,AB是圆O的直径,P是线段AB延长线上一点,割线PCD交圆O于点C,D,过点P作AP的垂线,交线段AC的延长线于点E,交线段AD的延长线于点F,且PE•PF=5,PB=$\frac{1}{2}$OA.
(1)求证:C,D,E,F四点共圆;
(2)求圆O的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,若$\overrightarrow{AB}$$•\overrightarrow{AC}$=7,|$\overrightarrow{AB}$$-\overrightarrow{AC}$|=6,则△ABC的面积的最大值为12.

查看答案和解析>>

同步练习册答案