精英家教网 > 高中数学 > 题目详情
9.如图,AB是圆O的直径,P是线段AB延长线上一点,割线PCD交圆O于点C,D,过点P作AP的垂线,交线段AC的延长线于点E,交线段AD的延长线于点F,且PE•PF=5,PB=$\frac{1}{2}$OA.
(1)求证:C,D,E,F四点共圆;
(2)求圆O的面积.

分析 (1)连结BD,AB是圆O的直径,可得∠BDA=90°,由同弧所对圆周角相等可得∠CDB=∠CAB,证得∠PEC=∠PDF,即可得到四点共圆;
(2)设出圆O的半径为r,利用割线定理,解方程可得r=2,再由圆的面积公式计算即可得到所求值.

解答 (1)证明:连结BD,AB是圆O的直径,
直径所对圆周角为直角可得∠BDA=90°,
由同弧所对圆周角相等,可得∠CDB=∠CAB,
又∠PEC=90°-∠CAB,
∠PDF=90°-∠CDB,
可得:∠PEC=∠PDF,
故D,C,E,F四点共圆;
(2)解:设圆O的半径为r,
由圆的割线定理可得,
PE•PF=PC•PD=PB•PA=$\frac{1}{2}$r(2r+$\frac{1}{2}$r)=5,
解得r=2,
可得圆O的面积为4π.

点评 本题考查四点共圆的证明,注意运用圆的同弧所对圆周角相等,以及直径所对圆周角为直角,考查割线定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|1<x≤3},B={x|x<4,x∈Z},则A∩B=(  )
A.(2,3)B.[2,3]C.{2,3}D.{2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在△ABC中,CA=2,CB=1,CD是AB边上的中线.
(Ⅰ)求证:sin∠BCD=2sin∠ACD;
(Ⅱ)若∠ACD=30°,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.集合P={x||x|>1},Q={x|y=$\sqrt{4-{x}^{2}}$},则P∩Q=(  )
A.[-2,-1]B.(1,2)C.[-2,-1)∪(1,2]D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(2$\sqrt{x}$-$\frac{1}{\root{4}{x}}$)6的展开式的常数项是60(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图1,ABCD是边长为2的正方形,点E,F分别为BC,CD的中点,将△ABE,△ECF,△FDA分别沿AE,EF,FA折起,使B,C,D三点重合于点P,若四面体PAEF的四个顶点在同一个球面上,则该球的表面积是(  )
A.$\sqrt{6}π$B.C.$4\sqrt{3}π$D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数y=f(x)的导函数为f′(x),若y=f(x)的图象在点P(1,f(l))处的切线方程 为x-y+2=0,则f(1)+f′(1)=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l过定点P(1,1),且倾斜角为$\frac{π}{4}$,以坐标原点为极点,x轴的正半轴为极轴的坐标系中,曲线C的极坐标方程为$ρ=2cosθ+\frac{3}{ρ}$.
(1)求曲线C的直角坐标方程与直线l的参数方程;
(2)若直线l与曲线C相交于不同的两点A,B,求|AB|及|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线上存在一点与其中心及一个焦点构成等边三角形,则此双曲线的离心率为(  )
A.2B.$\sqrt{3}$+1C.$\sqrt{3}$D.$\sqrt{3}$-1

查看答案和解析>>

同步练习册答案