分析 (1)连结BD,AB是圆O的直径,可得∠BDA=90°,由同弧所对圆周角相等可得∠CDB=∠CAB,证得∠PEC=∠PDF,即可得到四点共圆;
(2)设出圆O的半径为r,利用割线定理,解方程可得r=2,再由圆的面积公式计算即可得到所求值.
解答
(1)证明:连结BD,AB是圆O的直径,
直径所对圆周角为直角可得∠BDA=90°,
由同弧所对圆周角相等,可得∠CDB=∠CAB,
又∠PEC=90°-∠CAB,
∠PDF=90°-∠CDB,
可得:∠PEC=∠PDF,
故D,C,E,F四点共圆;
(2)解:设圆O的半径为r,
由圆的割线定理可得,
PE•PF=PC•PD=PB•PA=$\frac{1}{2}$r(2r+$\frac{1}{2}$r)=5,
解得r=2,
可得圆O的面积为4π.
点评 本题考查四点共圆的证明,注意运用圆的同弧所对圆周角相等,以及直径所对圆周角为直角,考查割线定理的运用,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (2,3) | B. | [2,3] | C. | {2,3} | D. | {2,3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,-1] | B. | (1,2) | C. | [-2,-1)∪(1,2] | D. | [-2,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{6}π$ | B. | 6π | C. | $4\sqrt{3}π$ | D. | 12π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{3}$+1 | C. | $\sqrt{3}$ | D. | $\sqrt{3}$-1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com