分析 设A、B、C所对边分别为a,b,c,由$\overrightarrow{AB}$$•\overrightarrow{AC}$=7,|$\overrightarrow{AB}$$-\overrightarrow{AC}$|=6,得bccosA=7,a=6①,由余弦定理可得b2+c2-2bccosA=36②,联立①②可得b2+c2=50,由不等式可得bc≤25,即可求出△ABC面积的最大值.
解答 解:设A、B、C所对边分别为a,b,c,由$\overrightarrow{AB}$$•\overrightarrow{AC}$=7,|$\overrightarrow{AB}$$-\overrightarrow{AC}$|=6,得bccosA=7,a=6①,
S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bc$\sqrt{1-co{s}^{2}A}$=$\frac{1}{2}bc\sqrt{1-\frac{49}{{b}^{2}{c}^{2}}}=\frac{1}{2}\sqrt{{b}^{2}{c}^{2}-49}$.
由余弦定理可得b2+c2-2bccosA=36②,
由①②消掉cosA得b2+c2=50,所以b2+c2≥2bc,
所以bc≤25,当且仅当b=c=5时取等号,
所以S△ABC=$\frac{1}{2}\sqrt{(bc)^{2}-49}$≤12,
故△ABC的面积的最大值为12,
故答案为:12.
点评 本题考查平面向量数量积的运算、三角形面积公式不等式求最值等知识,综合性较强,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1<x1<2,x1+x2<2 | B. | 1<x1<2,x1+x2<1 | C. | x1>1,x1+x2<2 | D. | x1>1,x1+x2<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{3}$+1 | C. | $\sqrt{3}$ | D. | $\sqrt{3}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数y=x2的函数值组成的集合 | B. | 函数y=x2的自变量的值组成的集合 | ||
| C. | 函数y=x2的图象上的点组成的集合 | D. | 以上说法都不对 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com