分析 计算出向量的夹角,代入公式得投影,代入坐标计算出数量积.
解答 解:|$\overrightarrow{a}$|=$\sqrt{1+4+9}$=$\sqrt{14}$,|$\overrightarrow{b}$|=$\sqrt{1+1+1}$=$\sqrt{3}$,
$\overrightarrow{a}•\overrightarrow{b}$=-1+2+3=4,
设$\overrightarrow{a},\overrightarrow{b}$夹角为θ,则cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{4}{\sqrt{14}•\sqrt{3}}$,
∴向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影为|$\overrightarrow{a}$|•cosθ=$\frac{4}{\sqrt{3}}=\frac{4\sqrt{3}}{3}$.
$\overrightarrow a•(\overrightarrow a+\overrightarrow b)$=$\overrightarrow{a}$2+$\overrightarrow{a}•\overrightarrow{b}$=14+4=18.
故答案为$\frac{{4\sqrt{3}}}{3}$,18.
点评 本题考查了平面向量的模运算和数量积运算,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | $(-\frac{2}{3},0)$ | C. | (-1,0) | D. | (-3,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x2+y2=0,则x=y=0”的逆否命题为“若x,y中至少有一个不为0,则x2+y2≠0” | |
| B. | 若命题$p:?{x_0}∈R,x_0^2-{x_0}+1≤0$,则¬p:?x∈R,x2-x+1>0 | |
| C. | 若向量$\overrightarrow a,\overrightarrow b$满足$\overrightarrow a•\overrightarrow b<0$,则$\overrightarrow a$与$\overrightarrow b$的夹角为钝角 | |
| D. | △ABC中,sinA>sinB是A>B的充要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com