精英家教网 > 高中数学 > 题目详情
15.对于四面体A-BCD,有以下命题:①若AB=AC=AD,则点A在底面BCD内的射影是△BCD的外心;②若AB⊥CD,AC⊥BD,则点A在底面BCD内的射影是△BCD的内心;③四面体A-BCD的四个面中最多有四个直角三角形;④若四面体A-BCD的6条棱长都为1,则它的内切球的表面积为$\frac{π}{6}$.其中正确的命题是(  )
A.①③B.③④C.①②③D.①③④

分析 对于①,根据射影的定义即可判断;
对于②,根据三垂线定理的逆定理可知,O是△BCD的垂心,
对于③在正方体中,找出满足题意的四面体,即可得到直角三角形的个数,
对于④作出正四面体的图形,球的球心位置,说明OE是内切球的半径,利用直角三角形,逐步求出内切球的表面积.

解答 解:对于①,设点A在平面BCD内的射影是O,因为AB=AC=AD,所以OB=OC=OD,
则点A在底面BCD内的射影是△BCD的外心,故①正确;
对于②设点A在平面BCD内的射影是O,则OB是AB在平面BCD内的射影,因为AB⊥CD,根据三垂线定理的逆定理可知:CD⊥OB 同理可证BD⊥OC,所以O是△BCD的垂心,故②不正确;
对于③:如图:直接三角形的直角顶点已经标出,直角三角形的个数是4.故③正确
对于④,如图O为正四面体ABCD的内切球的球心,正四面体的棱长为:1;
所以OE为内切球的半径,BF=AF=$\frac{\sqrt{3}}{2}$,BE=$\frac{\sqrt{3}}{3}$,
所以AE=$\sqrt{1-\frac{1}{3}}$=$\frac{\sqrt{6}}{3}$,
因为BO2-OE2=BE2
所以($\frac{\sqrt{6}}{3}$-OE)2-OE2=($\frac{\sqrt{3}}{3}$)2
所以OE=$\frac{\sqrt{6}}{12}$,
所以球的表面积为:4π•OE2=$\frac{π}{6}$,故④正确.
故选D.

点评 本题考查命题的真假判断与应用,综合考查了线面、面面垂直的判断与性质,考查了学生的空间想象能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.(1)解不等式|x+1|+|x+3|<4;
(2)若a,b满足(1)中不等式,求证:2|a-b|<|ab+2a+2b|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知一长方体的体对角线的长为l0,这条对角线在长方体一个面上的正投影长为8,则这个长方体体积的最大值为(  )
A.64B.128C.192D.384

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\frac{x^3}{cosx}$的定义域为$({-\frac{π}{2},\frac{π}{2}})$,当$|{x_i}|<\frac{π}{2}$(i=1,2,3)时,若x1+x2>0,x2+x3>0,x1+x3>0,则有f(x1)+f(x2)+f(x3)的值(  )
A.恒小于零B.恒等于零
C.恒大于零D.可能大于零,也可能小于零

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对于四面体A-BCD,有以下命题:①若AB=AC=AD,则AB,AC,AD与底面所成的角相等;②若AB⊥CD,AC⊥BD,则点A在底面BCD内的射影是△BCD的内心;③四面体A-BCD的四个面中最多有四个直角三角形;④若四面体A-BCD的6条棱长都为1,则它的内切球的表面积为$\frac{π}{6}$.其中正确的命题是(  )
A.①③B.③④C.①②③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.半径为2的球内有一底面边长为2的内接正四棱柱(底面是正方形,侧棱垂直底面),则当该正四棱柱的侧面积最大时球的表面积与该正四棱柱的侧面积之差是(  )
A.$16({π-\sqrt{3}})$B.$16({π-\sqrt{2}})$C.$8({2π-3\sqrt{2}})$D.$8({2π-\sqrt{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=5,则球O的表面积为(  )
A.50πB.100πC.200πD.$\frac{{125\sqrt{2}π}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在△ABC中,AC=2,∠ACB=90°,∠ABC=30°,P是AB边的中点,现把△ACP沿CP折成如图2所示的三棱锥A-BCP,使得AB=$\sqrt{10}$.
(1)求证:平面ACP⊥平面BCP;
(2)求二面角B-AC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若α是第二象限角,则π+α是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

同步练习册答案