精英家教网 > 高中数学 > 题目详情
6.已知一长方体的体对角线的长为l0,这条对角线在长方体一个面上的正投影长为8,则这个长方体体积的最大值为(  )
A.64B.128C.192D.384

分析 以投影面为底面,得正方体的高为6,设长方体底面边长分别为a,b,则a2+b2=64,由此能求出这个长方体体积的最大值.

解答 解:以投影面为底面,得到正方体的高为$\sqrt{1{0}^{2}-{8}^{2}}$=6,
设长方体底面边长分别为a,b,
则a2+b2=64,
∴这个长方体体积V=6ab≤3(a2+b2)=192.
∴这个长方体体积的最大值为192.
故选:C.

点评 本题考查长方体的体积的最大值的求法,考查基本不等式、长方体性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知集合A={-1,0,1,2,3,4,5},B={b|b=n2-1,n∈Z},则A∩B=(  )
A.{-1,3}B.{0,3}C.{-1,0,3}D.{-1,0,3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设△ABC的内角A,B,C的对边分别为a,b,c,已知b2+c2-a2=$\sqrt{3}$bc.
(1)若tanB=$\frac{\sqrt{6}}{12}$,求$\frac{b}{a}$;
(2)若B=$\frac{2π}{3}$,b=2$\sqrt{3}$,求BC边上的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知[x]表示不大于x的最大整数,设函数f(x)=[log2$\frac{{2}^{x}+1}{9}$],得到下列结论,
结论 1:当 2<x<3 时,f(x)max=-1.
结论 2:当 4<x<5 时,f(x)max=1
结论 3:当 6<x<7时,f(x)max=3

照此规律,结论6为当 12<x<13时,f(x)max=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知sinα-cosα=$\frac{1}{3}$,则cos($\frac{π}{2}$-2α)=(  )
A.-$\frac{8}{9}$B.$\frac{2}{3}$C.$\frac{8}{9}$D.$\frac{\sqrt{17}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知两曲线f(x)=$\frac{1}{2}$x2+ax与g(x)=2a2lnx+b有公共点,且在该点处有相同的切线,则a∈(0,+∞)时,实数b的最大值是(  )
A.e${\;}^{\frac{1}{2}}$B.2e${\;}^{\frac{1}{2}}$C.e${\;}^{\frac{2}{3}}$D.$\frac{3}{2}$e${\;}^{\frac{2}{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,直三棱柱ABC-A1B1C1中,AA1=2,AB=BC=1,∠ABC=90°,外接球的球心为O,点E是侧棱BB1上的一个动点.有下列判断:
①直线AC与直线C1E是异面直线;
②A1E一定不垂直AC1
③三棱锥E-AA1O的体积为定值;
④AE+EC1的最小值为$2\sqrt{2}$.
其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于四面体A-BCD,有以下命题:①若AB=AC=AD,则点A在底面BCD内的射影是△BCD的外心;②若AB⊥CD,AC⊥BD,则点A在底面BCD内的射影是△BCD的内心;③四面体A-BCD的四个面中最多有四个直角三角形;④若四面体A-BCD的6条棱长都为1,则它的内切球的表面积为$\frac{π}{6}$.其中正确的命题是(  )
A.①③B.③④C.①②③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,空间四边形的各边和对角线长均相等,E 是 BC 的中点,那么(  )
A.$\overrightarrow{AE}$•$\overrightarrow{BC}$<$\overrightarrow{AE}$•$\overrightarrow{CD}$B.$\overrightarrow{AE}$•$\overrightarrow{BC}$=$\overrightarrow{AE}$•$\overrightarrow{CD}$
C.$\overrightarrow{AE}$•$\overrightarrow{BC}$>$\overrightarrow{AE}$•$\overrightarrow{CD}$D.$\overrightarrow{AE}$•$\overrightarrow{BC}$与 $\overrightarrow{AE}$•$\overrightarrow{CD}$不能比较大小

查看答案和解析>>

同步练习册答案