精英家教网 > 高中数学 > 题目详情
14.已知[x]表示不大于x的最大整数,设函数f(x)=[log2$\frac{{2}^{x}+1}{9}$],得到下列结论,
结论 1:当 2<x<3 时,f(x)max=-1.
结论 2:当 4<x<5 时,f(x)max=1
结论 3:当 6<x<7时,f(x)max=3

照此规律,结论6为当 12<x<13时,f(x)max=9.

分析 照此规律,一般性的结论为当 2n<x<2n+1时,f(x)max=2n-3.即可得出结论.

解答 解:结论 1:当 2<x<3 时,f(x)max=-1.
结论 2:当 4<x<5 时,f(x)max=1
结论 3:当 6<x<7时,f(x)max=3

照此规律,一般性的结论为当 2n<x<2n+1时,f(x)max=2n-3.
结论6为当 12<x<13时,f(x)max=9,
故答案为当 12<x<13时,f(x)max=9.

点评 本题考查归纳推理,考查学生分析解决问题的能力,正确归纳是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知单位向量$\overrightarrow a$与$\overrightarrow b$的夹角为120°,则$|{\overrightarrow a-3\overrightarrow b}|$=(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$\sqrt{13}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)解不等式|x+1|+|x+3|<4;
(2)若a,b满足(1)中不等式,求证:2|a-b|<|ab+2a+2b|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点和上顶点分别为A,B,左焦点为F,以原点O为圆心的圆与直线BF相切,且该圆与y轴的正半轴交于点C,过点C的直线交椭圆于M,N两点,若四边形FAMN是平行四边形,则该椭圆的离心率为(  )
A.$\frac{3}{5}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A(2,0),直线4x+3y+1=0被圆C:(x+3)2+(y-m)2=13(m<3)所截得的弦长为4$\sqrt{3}$,且P为圆C上任意一点,则|PA|的最大值为(  )
A.$\sqrt{29}$-$\sqrt{13}$B.5+$\sqrt{13}$C.2$\sqrt{7}$+$\sqrt{13}$D.$\sqrt{29}$+$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\sqrt{x+1}$+lg(6-3x)的定义域为(  )
A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知一长方体的体对角线的长为l0,这条对角线在长方体一个面上的正投影长为8,则这个长方体体积的最大值为(  )
A.64B.128C.192D.384

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\frac{x^3}{cosx}$的定义域为$({-\frac{π}{2},\frac{π}{2}})$,当$|{x_i}|<\frac{π}{2}$(i=1,2,3)时,若x1+x2>0,x2+x3>0,x1+x3>0,则有f(x1)+f(x2)+f(x3)的值(  )
A.恒小于零B.恒等于零
C.恒大于零D.可能大于零,也可能小于零

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在△ABC中,AC=2,∠ACB=90°,∠ABC=30°,P是AB边的中点,现把△ACP沿CP折成如图2所示的三棱锥A-BCP,使得AB=$\sqrt{10}$.
(1)求证:平面ACP⊥平面BCP;
(2)求二面角B-AC-P的余弦值.

查看答案和解析>>

同步练习册答案