精英家教网 > 高中数学 > 题目详情
9.已知A(2,0),直线4x+3y+1=0被圆C:(x+3)2+(y-m)2=13(m<3)所截得的弦长为4$\sqrt{3}$,且P为圆C上任意一点,则|PA|的最大值为(  )
A.$\sqrt{29}$-$\sqrt{13}$B.5+$\sqrt{13}$C.2$\sqrt{7}$+$\sqrt{13}$D.$\sqrt{29}$+$\sqrt{13}$

分析 由题意,圆心C(-3,m)到直线4x+3y+1=0的距离为$\frac{|-12+3m+1|}{5}=\sqrt{13-(\frac{4\sqrt{3}}{2})^{2}}$,求出m,可得|AC|,即可得出结论.

解答 解:由题意,圆心C(-3,m)到直线4x+3y+1=0的距离为$\frac{|-12+3m+1|}{5}=\sqrt{13-(\frac{4\sqrt{3}}{2})^{2}}$,
∵m<3,∴m=2,
∴|AC|=$\sqrt{29}$,
∴|PA|的最大值为$\sqrt{29}$+$\sqrt{13}$,
故选D.

点评 本题考查直线与圆的位置关系,考查点到直线距离公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知F为双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦点,l1,l2为C的两条渐近线,点A在l1上,且FA⊥l1,点B在l2上,且FB∥l1,若$|{FA}|=\frac{4}{5}|{FB}|$,则双曲线C的离心率为(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{5}}}{2}$或$\frac{{3\sqrt{5}}}{2}$D.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量y(单位:千克)与该地当日最低气温x(单位:°C)的数据,如下表:
x258911
y1210887
(1)求出y与x的回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)判断y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6°C,请用所求回归方程预测该店当日的销售量;
(3)设该地1月份的日最低气温X~N(μ,σ2),其中μ近似为样本平均数$\overline x$,σ2近似为样本方差s2,求P(3.8<X<13.4).
附:①回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x\overline{y}}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
②$\sqrt{10}$≈3.2,$\sqrt{3.2}$≈1.8.若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设△ABC的内角A,B,C的对边分别为a,b,c,已知b2+c2-a2=$\sqrt{3}$bc.
(1)若tanB=$\frac{\sqrt{6}}{12}$,求$\frac{b}{a}$;
(2)若B=$\frac{2π}{3}$,b=2$\sqrt{3}$,求BC边上的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.P为双曲线x2$-\frac{{y}^{2}}{3}$=1右支上一点,F1,F2为左、右焦点,若|PF1|+|PF2|=10,则$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知[x]表示不大于x的最大整数,设函数f(x)=[log2$\frac{{2}^{x}+1}{9}$],得到下列结论,
结论 1:当 2<x<3 时,f(x)max=-1.
结论 2:当 4<x<5 时,f(x)max=1
结论 3:当 6<x<7时,f(x)max=3

照此规律,结论6为当 12<x<13时,f(x)max=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知sinα-cosα=$\frac{1}{3}$,则cos($\frac{π}{2}$-2α)=(  )
A.-$\frac{8}{9}$B.$\frac{2}{3}$C.$\frac{8}{9}$D.$\frac{\sqrt{17}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,直三棱柱ABC-A1B1C1中,AA1=2,AB=BC=1,∠ABC=90°,外接球的球心为O,点E是侧棱BB1上的一个动点.有下列判断:
①直线AC与直线C1E是异面直线;
②A1E一定不垂直AC1
③三棱锥E-AA1O的体积为定值;
④AE+EC1的最小值为$2\sqrt{2}$.
其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{a }满足a=$\frac{4}{3}$,an+1-1=an2-an (n∈N*),则m=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2017}}$的整数部分是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案