精英家教网 > 高中数学 > 题目详情
19.已知F为双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦点,l1,l2为C的两条渐近线,点A在l1上,且FA⊥l1,点B在l2上,且FB∥l1,若$|{FA}|=\frac{4}{5}|{FB}|$,则双曲线C的离心率为(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{5}}}{2}$或$\frac{{3\sqrt{5}}}{2}$D.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$

分析 设右焦点F(c,0),双曲线的两条渐近线方程为l1:y=$\frac{b}{a}$x,l2:y=-$\frac{b}{a}$x.由点到直线的距离公式,计算可得|FA|,再由两直线平行的条件:斜率相等,可得直线FB的方程,联立直线l2,可得交点B的坐标,运用两点的距离公式,化简整理,结合离心率公式,计算即可得到所求值.

解答 解:设F(c,0),双曲线的两条渐近线方程为l1:y=$\frac{b}{a}$x,l2:y=-$\frac{b}{a}$x.①
则F到直线l1的距离|FA|=$\frac{|bc-0|}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{bc}{c}$=b,
由FB∥l1,可得直线FB的方程为y=$\frac{b}{a}$(x-c),②
由①②可得x=$\frac{1}{2}$c,y=-$\frac{bc}{2a}$,
即有B($\frac{1}{2}$c,-$\frac{bc}{2a}$),
|FB|=$\sqrt{(c-\frac{1}{2}c)^{2}+(\frac{bc}{2a})^{2}}$=$\frac{1}{2}$c$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$•$\frac{{c}^{2}}{a}$,
由$|{FA}|=\frac{4}{5}|{FB}|$,
可得b=$\frac{4}{5}$•$\frac{1}{2}$•$\frac{{c}^{2}}{a}$,即2c2=5ab,
两边平方可得4c4=25a2b2=25a2(c2-a2),
由e=$\frac{c}{a}$,可得4e4-25e2+25=0,
解得e2=5或e2=$\frac{5}{4}$,
即为e=$\sqrt{5}$或e=$\frac{\sqrt{5}}{2}$.
故选:D.

点评 本题考查双曲线的离心率的求法,注意运用渐近线方程和点到直线的距离公式,以及两直线平行的条件:斜率相等,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知正数数列{an}的前n项和为Sn,${a_n}=2\sqrt{S_n}-1$,设c为实数,对任意的三个成等差数列的不等的正整数m,k,n,不等式Sm+Sn>cSk恒成立,则实数c的取值范围是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.欧拉(Leonhard  Euler,国籍瑞士)是科学史上最多产的一位杰出的数学家,他发明的一种表示复数的方法e=cosθ+isinθ(i为虚数单位),将指数函数的定义域扩大到复数,并建立了三角函数和指数函数的关系,这个公式在高等数学的复变函数理论中占有非常重要的地位,被誉为“数学中的天桥”.根据此方法可知,在复平面内复数e2i对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若$z=\frac{1+i}{1-i}$,则$|{\bar z}|$=(  )
A.iB.-iC.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产的零件中有缺点的零件数随机器运转的速度而变化,如表为抽样数据:
转速x(转/秒)1614128
每小时生产有缺点的零件数y(件)11985
(Ⅰ)请画出上表数据的散点图;
(Ⅱ)根据散点图判断,y=ax+b与$y=c\sqrt{x}+d$哪一个适宜作为每小时生产的零件中有缺点的零件数y关于转速x的回归方程类型 (给出判断即可,不必说明理由),根据判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)若实际生产中,允许每小时生产的零件中有缺点的零件数最多为10个,那么机器的运转速度应控制在什么范围内?
(参考公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知单位向量$\overrightarrow a$与$\overrightarrow b$的夹角为120°,则$|{\overrightarrow a-3\overrightarrow b}|$=(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$\sqrt{13}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知多面体ABCDEF中,四边形ABCD为平行四边形,AD⊥平面AEC,且$AC=\sqrt{2}$,AE=EC=1,AD=2EF,EF∥AD.
(Ⅰ)求证:平面FCE⊥平面ADE;
(Ⅱ)若AD=2,求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短轴长等于焦距,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A(2,0),直线4x+3y+1=0被圆C:(x+3)2+(y-m)2=13(m<3)所截得的弦长为4$\sqrt{3}$,且P为圆C上任意一点,则|PA|的最大值为(  )
A.$\sqrt{29}$-$\sqrt{13}$B.5+$\sqrt{13}$C.2$\sqrt{7}$+$\sqrt{13}$D.$\sqrt{29}$+$\sqrt{13}$

查看答案和解析>>

同步练习册答案