精英家教网 > 高中数学 > 题目详情
4.如图,空间四边形的各边和对角线长均相等,E 是 BC 的中点,那么(  )
A.$\overrightarrow{AE}$•$\overrightarrow{BC}$<$\overrightarrow{AE}$•$\overrightarrow{CD}$B.$\overrightarrow{AE}$•$\overrightarrow{BC}$=$\overrightarrow{AE}$•$\overrightarrow{CD}$
C.$\overrightarrow{AE}$•$\overrightarrow{BC}$>$\overrightarrow{AE}$•$\overrightarrow{CD}$D.$\overrightarrow{AE}$•$\overrightarrow{BC}$与 $\overrightarrow{AE}$•$\overrightarrow{CD}$不能比较大小

分析 求出向量的夹角,计算出$\overrightarrow{AE}•\overrightarrow{BC}$和$\overrightarrow{AE}•\overrightarrow{CD}$即可得出答案.

解答 解:△ABC是等边三角形,E是BC的中点,
∴AE⊥BC,∴$\overrightarrow{AE}•\overrightarrow{BC}=0$.
取BD的中点F,连接AF,EF,
设三棱锥的棱长为1,则AE=AF=$\frac{\sqrt{3}}{2}$,EF=$\frac{1}{2}$CD=$\frac{1}{2}$,
∴cos∠AEF=$\frac{A{E}^{2}+E{F}^{2}-A{F}^{2}}{2AE•EF}$=$\frac{\sqrt{3}}{3}$,
∴cos<$\overrightarrow{AE},\overrightarrow{CD}$>=-$\frac{\sqrt{3}}{3}$,
∴$\overrightarrow{AE}•\overrightarrow{CD}$=$\frac{\sqrt{3}}{2}×1×(-\frac{\sqrt{3}}{3})$=-$\frac{1}{2}$.
∴$\overrightarrow{AE}•\overrightarrow{BC}$>$\overrightarrow{AE}•\overrightarrow{CD}$.
故选C.

点评 本题考查了平面向量的数量积运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知一长方体的体对角线的长为l0,这条对角线在长方体一个面上的正投影长为8,则这个长方体体积的最大值为(  )
A.64B.128C.192D.384

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=5,则球O的表面积为(  )
A.50πB.100πC.200πD.$\frac{{125\sqrt{2}π}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在△ABC中,AC=2,∠ACB=90°,∠ABC=30°,P是AB边的中点,现把△ACP沿CP折成如图2所示的三棱锥A-BCP,使得AB=$\sqrt{10}$.
(1)求证:平面ACP⊥平面BCP;
(2)求二面角B-AC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在曲线的切线y=x3+3x2+6x-10斜率中,最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点A、B、C的坐标分别是(4,0),(0,4),(3cosα,3sinα),且$α∈({\frac{π}{2},\frac{3π}{4}})$.若$\overrightarrow{AC}⊥\overrightarrow{BC}$,求$\frac{{2{{sin}^2}α-sin2α}}{1+tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若集合A={-2,0,2,3},B={-1,0,1,2},则A∩B=(  )
A.{0,1}B.{0,2}C.{1,3}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若α是第二象限角,则π+α是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥E-ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=2,F为线段DE的中点.
(1)求证:BE∥平面ACF
(2)求异面直线AD与CF所成角的余弦值.

查看答案和解析>>

同步练习册答案