精英家教网 > 高中数学 > 题目详情
7.已知三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=5,则球O的表面积为(  )
A.50πB.100πC.200πD.$\frac{{125\sqrt{2}π}}{3}$

分析 由于直三棱柱ABC-A1B1C1的底面ABC为直角三角形,我们可以把直三棱柱ABC-A1B1C1补成四棱柱,则四棱柱的体对角线是其外接球的直径,求出外接球的直径后,代入外接球的表面积公式,即可求出该三棱柱的外接球的表面积.

解答 解:由题意,三棱柱ABC-A1B1C1为直三棱柱ABC-A1B1C1,底面ABC为直角三角形,把直三棱柱ABC-A1B1C1补成四棱柱,
则四棱柱的体对角线是其外接球的直径,
所以外接球半径为$\frac{1}{2}\sqrt{9+16+25}$=$\frac{5\sqrt{2}}{2}$,
则三棱柱ABC-A1B1C1外接球的表面积是4πR2=4×$\frac{50}{4}$π=50π.
故选A.

点评 本题考查球的体积和表面积,球的内接体问题,关键是由组合体的位置关系得到球的半径,考查学生空间想象能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设△ABC的内角A,B,C的对边分别为a,b,c,已知b2+c2-a2=$\sqrt{3}$bc.
(1)若tanB=$\frac{\sqrt{6}}{12}$,求$\frac{b}{a}$;
(2)若B=$\frac{2π}{3}$,b=2$\sqrt{3}$,求BC边上的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,直三棱柱ABC-A1B1C1中,AA1=2,AB=BC=1,∠ABC=90°,外接球的球心为O,点E是侧棱BB1上的一个动点.有下列判断:
①直线AC与直线C1E是异面直线;
②A1E一定不垂直AC1
③三棱锥E-AA1O的体积为定值;
④AE+EC1的最小值为$2\sqrt{2}$.
其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于四面体A-BCD,有以下命题:①若AB=AC=AD,则点A在底面BCD内的射影是△BCD的外心;②若AB⊥CD,AC⊥BD,则点A在底面BCD内的射影是△BCD的内心;③四面体A-BCD的四个面中最多有四个直角三角形;④若四面体A-BCD的6条棱长都为1,则它的内切球的表面积为$\frac{π}{6}$.其中正确的命题是(  )
A.①③B.③④C.①②③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且当PA与抛物线相切时,点P恰好在以A、B为焦点的双曲线上,则双曲线的离心率为(  )
A.$\frac{{\sqrt{5}-1}}{2}$B.$\frac{{\sqrt{2}+1}}{2}$C.$\sqrt{2}+1$D.$\sqrt{5}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为了得到函数$y=3sin(2x+\frac{π}{5})$的图象,只需把y=3sin2x上的所有的点(  )
A.向左平行移动$\frac{π}{10}$长度单位B.向右平行移动$\frac{π}{10}$长度单位
C.向右平行移动$\frac{π}{5}$长度单位D.向左平行移动$\frac{π}{5}$长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{a }满足a=$\frac{4}{3}$,an+1-1=an2-an (n∈N*),则m=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2017}}$的整数部分是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,空间四边形的各边和对角线长均相等,E 是 BC 的中点,那么(  )
A.$\overrightarrow{AE}$•$\overrightarrow{BC}$<$\overrightarrow{AE}$•$\overrightarrow{CD}$B.$\overrightarrow{AE}$•$\overrightarrow{BC}$=$\overrightarrow{AE}$•$\overrightarrow{CD}$
C.$\overrightarrow{AE}$•$\overrightarrow{BC}$>$\overrightarrow{AE}$•$\overrightarrow{CD}$D.$\overrightarrow{AE}$•$\overrightarrow{BC}$与 $\overrightarrow{AE}$•$\overrightarrow{CD}$不能比较大小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax2+bx+clnx(a,b,c∈R),g(x)=xcosx-sinx+1(x>0).
(1)求函数g(x)的单调区间;
(2)当b=-2a,c=1时,是否存在实数a,使得0<x≤2时,函数y=f(x)图象上的点都在$\left\{\begin{array}{l}0<x≤2\\ x-y-1≥0\end{array}\right.$所表示的平面区域内(含边界)?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案