精英家教网 > 高中数学 > 题目详情
9.奇函数f(x),当x<0时,有f(x)=x(2-x),则f(4)的值为(  )
A.12B.-12C.-24D.24

分析 根据函数奇偶性的性质进行转化求解即可.

解答 解:∵定义在R的奇函数f(x),当x<0时,f(x)=x(2-x),
∴f(4)=-f(-4)=-[(-4)(2+4)]=24,
故选:D.

点评 本题主要考查函数值的计算,利用函数奇偶性的性质进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=g(x)+x3+2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则f′(1)+g′(1)等于(  )
A.4B.7C.-4D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若1+2+4+…+2n-1=127,求自然数n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$α∈(-\frac{π}{2},0)$且$sin(\frac{π}{2}+α)=\frac{4}{5}$,则tanα=(  )
A.$-\frac{3}{4}$B.$\frac{3}{4}$C.$-\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若双曲线$\frac{x^2}{m}-{y^2}=1$的实轴长是离心率的2倍,则m=$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设等差数列{an}的公差d≠0,已知a1=2,且a1,a2,a4成等比数列
(1)求数列{an}的通项公式
(2)设数列bn=$\frac{1}{{{a}_{n}}^{2}-1}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知sin2α=$\frac{1}{4}$,则cos2($α+\frac{π}{4}$)=$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,在梯形ABCD中,AB=3CD,则下列判断正确的是(  )
A.$\overrightarrow{AB}$=3$\overrightarrow{CD}$B.$\overrightarrow{AC}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\overrightarrow{AD}$C.$\overrightarrow{BD}$=$\overrightarrow{AB}$-$\overrightarrow{AD}$D.$\overrightarrow{BC}$=-$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=x2(ex+e-x)-(2x+1)2(e2x+1+e-2x-1),则满足f(x)>0的实数x的取值范围为(  )
A.(-1,-$\frac{1}{3}$)B.(-∞,-1)C.(-$\frac{1}{3}$,+∞)D.(-∞,-1)∪(-$\frac{1}{3}$,+∞)

查看答案和解析>>

同步练习册答案