精英家教网 > 高中数学 > 题目详情
4.若双曲线$\frac{x^2}{m}-{y^2}=1$的实轴长是离心率的2倍,则m=$\frac{1+\sqrt{5}}{2}$.

分析 利用离心率公式,建立方程,即可求得双曲线的实轴长.

解答 解:∵$2e=2\sqrt{1+\frac{b^2}{a^2}}=2\sqrt{1+\frac{1}{m}}=2\sqrt{m}$,且m>0,
∴$m-\frac{1}{m}=1$,解得$m=\frac{{1+\sqrt{5}}}{2}$或$m=\frac{{1-\sqrt{5}}}{2}$(舍去).
故答案为:$\frac{{1+\sqrt{5}}}{2}$

点评 本题考查双曲线的性质,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.空间9个点分布异面直线L1、L2上,L1上有4个点,L2上有5个点,则由它们可确定异面直线的对数为(  )
A.121对B.108对C.21对D.60对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.求由抛物线f(x)=x2,直线x=1以及x轴所围成的平面图形的面积时,若将区间[0,1]5等分,如图所示,以小区间中点的纵坐标为高,所有小矩形的面积之和为0.33.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知曲线C1:y=$\frac{2x}{x+1}$(x>0)及曲线C2:y=$\frac{1}{3x}$(x>0),C1上的点P1的横坐标为a1(0<a1<$\frac{1}{2}$).从C1上的点Pn(n∈N+)作直线平行于x轴,交曲线C2于点Qn,再从点Qn作直线平行于y轴,交曲线C1于点Pn+1.点Pn(n=1,2,3,…)的横坐标构成数列{an}
(Ⅰ)试求an+1与an之间的关系,并证明:a2n-1<$\frac{1}{2}<{a_{2n}}(n∈{N_+})$;
(Ⅱ)若a1=$\frac{1}{3}$,求证:|a2-a1|+|a3-a2|+…+|an+1-an|<$\frac{4}{3}(n∈{N_+})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(2cos2x,$\sqrt{3}$),$\overrightarrow{b}$=(1,sin2x),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求函数f(x)(x∈R)的单调增区间;
(2)若f(α-$\frac{π}{3}$)=2,α∈[$\frac{π}{2}$,π],求sin(2α+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.奇函数f(x),当x<0时,有f(x)=x(2-x),则f(4)的值为(  )
A.12B.-12C.-24D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}\right.$,则z=4x+y的最大值为(  )
A.-6B.10C.12D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知:如图,BC是半圆O的直径,D,E是半圆O上两点,$\widehat{ED}=\widehat{CE}$,CE的延长线与BD的延长线交于点A.
(1)求证:AE=DE;
(2)若$AE=2\sqrt{5},tan∠ABC=\frac{4}{3}$,求CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足a1=3,且对任意的正整数m,n都有an+m=an•am,若数列{bn}满足bn=n-1+log3an,{bn}的前n项和为Bn
(Ⅰ)求an和Bn
(Ⅱ)令cn=an•bn,dn=$\frac{4n+4}{{B}_{n}•{B}_{n+2}}$,数列{cn}的前n项和为Sn,数列{dn}的前n项和为Tn,分别求Sn和Tn

查看答案和解析>>

同步练习册答案