分析 (1)由圆周角定理及直角三角形的性质可得到∠A=∠ADE,再根据等角对等边即可求得结论.
(2)连接BE,根据等腰三角形,以及直角三角形,推出边长关系,利用射影定理求解即可.
解答
(1)证明:∵BC是半圆O直径,
∴∠ADC=∠BDC=90°.
∵,$\widehat{ED}=\widehat{CE}$,
∴∠EDC=∠ECD.
∴∠A=∠ADE.
∴AE=DE.
(2)解:连接BE,
∵$\widehat{ED}=\widehat{CE}$,
∴DE=EC.
∴AE=EC=2 $\sqrt{5}$.
∵BC是半圆O直径,
∴∠BEC=90°即BE⊥AC.
∴BA=BC.
∵Rt△BDC中,tan∠ABC=$\frac{4}{3}$,
设BD=3x,CD=4x,则BC=5x,
∴AB=BC=5x,AD=2x.
∵AE•AC=AD•AB,
∴2 $\sqrt{5}$×4 $\sqrt{5}$=2x•5x.
解得:x=2,即CD=8.
点评 本题考查圆周角定理,相似三角形的判定,直角三角形的性质等知识点的综合运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}-1}{2}$ | B. | $\sqrt{3}$-$\sqrt{2}$ | C. | $\sqrt{2}$-1 | D. | $\frac{\sqrt{3}+1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{AB}$=3$\overrightarrow{CD}$ | B. | $\overrightarrow{AC}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\overrightarrow{AD}$ | C. | $\overrightarrow{BD}$=$\overrightarrow{AB}$-$\overrightarrow{AD}$ | D. | $\overrightarrow{BC}$=-$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | e-l | B. | e | C. | 3 | D. | e+l |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com