精英家教网 > 高中数学 > 题目详情
2.若f(x)=3-2x,则|f(x+1)+2|≤3的解集为[0,3].

分析 求出f(x+1),问题转化为:|2x-3|≤3,解出即可.

解答 解:若f(x)=3-2x,
则|f(x+1)+2|=|3-2(x+1)+2|=|2x-3|≤3,
解得:0≤x≤3,
故不等式的解集为[0,3],
故答案为:[0,3].

点评 本题考查了解绝对值不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,已知曲线C1:y=$\frac{2x}{x+1}$(x>0)及曲线C2:y=$\frac{1}{3x}$(x>0),C1上的点P1的横坐标为a1(0<a1<$\frac{1}{2}$).从C1上的点Pn(n∈N+)作直线平行于x轴,交曲线C2于点Qn,再从点Qn作直线平行于y轴,交曲线C1于点Pn+1.点Pn(n=1,2,3,…)的横坐标构成数列{an}
(Ⅰ)试求an+1与an之间的关系,并证明:a2n-1<$\frac{1}{2}<{a_{2n}}(n∈{N_+})$;
(Ⅱ)若a1=$\frac{1}{3}$,求证:|a2-a1|+|a3-a2|+…+|an+1-an|<$\frac{4}{3}(n∈{N_+})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知:如图,BC是半圆O的直径,D,E是半圆O上两点,$\widehat{ED}=\widehat{CE}$,CE的延长线与BD的延长线交于点A.
(1)求证:AE=DE;
(2)若$AE=2\sqrt{5},tan∠ABC=\frac{4}{3}$,求CD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在R上的函数f(x)满足f(x+2)=f(x),当x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-2{x}^{2},0≤x<1}\\{-{2}^{1-|x-\frac{3}{2}|},1≤x<2}\end{array}\right.$,函数g(x)=(2x-x2)ex+m,若?x1∈[-4,-2],?x2∈[-1,2],使得不等式f(x1)-g(x2)≥0成立,则实数m的取值范围是(  )
A.(-∞,-2]B.(-∞,$\frac{3}{e}$+2]C.[$\frac{3}{e}$+2,+∞)D.(-∞,$\frac{3}{e}$-2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(sinα+cosα)=sinα•cosα,则f(x)的定义域为[-$\sqrt{2}$,$\sqrt{2}$],$f(sin\frac{π}{6})$的值为-$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.数列{an}前n项和${S_n}={2^n}$,则an=$\left\{{\begin{array}{l}{2,n=1}\\{{2^{n-1}},n≥2}\end{array}}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足a1=3,且对任意的正整数m,n都有an+m=an•am,若数列{bn}满足bn=n-1+log3an,{bn}的前n项和为Bn
(Ⅰ)求an和Bn
(Ⅱ)令cn=an•bn,dn=$\frac{4n+4}{{B}_{n}•{B}_{n+2}}$,数列{cn}的前n项和为Sn,数列{dn}的前n项和为Tn,分别求Sn和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P为椭圆在y轴上的一个顶点,若2b,|$\overrightarrow{{F}_{1}{F}_{2}}$|,2a成等差数列,且△PF1F2的面积为12,则椭圆C的方程为$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设{an}是等差数列,下列结论中正确的是(  )
A.若a1+a2<0,则a2+a3<0
B.若{an}是正数数列,a2+an-1=12,Sn=36.则a3a4的最小值为36
C.若a1<0,则(a2-a1)(a2-a3)>0
D.若0<a1<a2,则a2$>\sqrt{{a}_{1}{a}_{3}}$

查看答案和解析>>

同步练习册答案