精英家教网 > 高中数学 > 题目详情
17.空间9个点分布异面直线L1、L2上,L1上有4个点,L2上有5个点,则由它们可确定异面直线的对数为(  )
A.121对B.108对C.21对D.60对

分析 设L1上的4点为A、B、C、D,L2上的5点为E、F、G、H、M,在L1上的4点中任取2点有6种选择,根据分步计数原理可得.

解答 解:设L1上的4点为A、B、C、D,L2上的5点为E、F、G、H、M,在L1上的4点中任取2点有6种选择,
假设选择A、B,在L2上的5点中任取2点有10种选择,假设选择E、F,
则AE、BF为一对异面直线,AF、BE为一对异面直线(AB、EF即为直线L1、L2单独考虑),
所以不考虑L1、L2一共有6×10×2=120对,
加上L1、L2也是一对,一共121对异面直线,
故选:A.

点评 本题主要考查异面直线的判断方法,体现了等价转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.定义在R上的函数f(x)满足f(x)+f(x+4)=16,当x∈(0,4]时,f(x)=x2-2x,则函数f(x)在[-4,2016]上的零点个数是(  )
A.504B.505C.1008D.1009

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{2}$cos(2x-$\frac{π}{4}$),x∈R.
(I)求函效f(x)的最小正周期和单调递增区间;
(2)当x∈[-$\frac{π}{8}$,$\frac{π}{2}$]时,方程f(x)=k恰有两个不同的实数根.求实数k的取值范围;
(3)将函数f(x)=$\sqrt{2}$cos(2x-$\frac{π}{4}$)的图象向右平移m(m>0)个单位后所得函数g(x)的图象关于原点中心对称,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,两同心圆(圆心在原点)分别与OA、OB交于A、B两点,其中A($\sqrt{2}$,1),|OB|=$\sqrt{6}$,阴影部分为两同心圆构成的扇环,已知扇环的面积为$\frac{3π}{4}$.
(1)设角θ的始边为x轴的正半轴,终边为OA,求$\frac{tan(π-θ)cos(θ+\frac{3π}{2})}{sin(2θ-π)}$的值;
(2)求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出下列命题:①若$\overrightarrow{AB}$∥$\overrightarrow{CD}$,则$\overrightarrow{AB}$与$\overrightarrow{CD}$共线;②若$\overrightarrow{AB}$=$\overrightarrow{CD}$,则$\overrightarrow{AB}$∥$\overrightarrow{BC}$;③若$\overrightarrow{AB}$=$\overrightarrow{CD}$,则$\overrightarrow{BA}$=$\overrightarrow{CD}$;④若$\overrightarrow{AB}$∥$\overrightarrow{BC}$,则A,B,C三点共线,其中正确的命题是①②(只填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=g(x)+x3+2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则f′(1)+g′(1)等于(  )
A.4B.7C.-4D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.有四个数,前三个数成等差数列,首末两数之和为16,中间两数之和为12,第二个数与第四个数之积等于第三个数的平方,求这四个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.-$\frac{32}{81}$是不是等比数列3,-2,$\frac{4}{3}$,-$\frac{8}{9}$,…的项?如果是,是第几项?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若双曲线$\frac{x^2}{m}-{y^2}=1$的实轴长是离心率的2倍,则m=$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

同步练习册答案