精英家教网 > 高中数学 > 题目详情
4.若实数x,y满足$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1,则z=x-2y的最大值是(  )
A.4B.5C.$\sqrt{89}$D.$\sqrt{93}$

分析 令x=5cosθ,y=4sinθ,化简z=x-2y=5cosθ-8sinθ=-$\sqrt{89}$sin(θ-α),再根据正弦函数的有界性求得它的最大值.

解答 解:由于实数x、y满足等式$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1,令x=5cosθ,y=4sinθ,
则z=x-2y=5cosθ-8sinθ=-$\sqrt{89}$sin(θ-α)≤$\sqrt{89}$,
故选:C.

点评 本题主要考查三角恒等变换的应用,正弦函数的定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知△ABC的三边满足(a+b+c)(a+b-c)=($\sqrt{3}$+2)ab,则角C等于(  )
A.15°B.30°C.45°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.cos(-2640°)+sin1665°=(  )
A.$\frac{{1+\sqrt{3}}}{2}$B.-$\frac{{1+\sqrt{3}}}{2}$C.$\frac{{1+\sqrt{2}}}{2}$D.-$\frac{{1+\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.由曲线y=cosx,x=$\frac{π}{2}$,x=$\frac{3π}{2}$,y=0围成的封闭图形的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在三角形ABC中,点D是线段BC中点,点F在线段CD上,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,z=$\frac{1}{x}$+$\frac{4}{y}$,若$\overrightarrow{AF}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,求z最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.复数z=1+i(i为虚数单位),$\overline{z}$为z的共轭复数,则z•$\overline{z}$-z-1=-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,阴影部分的面积是(  )
A.2$\sqrt{3}$B.-2$\sqrt{3}$C.$\frac{32}{3}$D.$\frac{35}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在20件产品中,有2件次品,从中任取5件,
(Ⅰ)在其中恰有2件次品的抽法有多少种?
(Ⅱ)抽出的5件都是合格品的抽法有多少种?
(Ⅲ)其中至少有1件次品的抽法有多少种?(以上问题,均要求写出式子和运算出的数字结果)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出100人的成绩作为样本.对高一年级的100名学生的成绩进行统计,得到成绩分布的频率分布直方图如图:
(1)若规定60分以上为合格,计算高一年级这次知识竞赛的合格率;
(2)将上述调查所得到的频率视为概率.现在从该校大量高一学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的合格人数为X.若每次抽取的结果是相互独立的,求X的分布列和期望E(X);
(3)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写2×2列联表,并问是否有99%的把握认为“这次知识竞赛的成绩与年级有关系”.
高一高二合计
合格人数
不合格人数
合计

查看答案和解析>>

同步练习册答案