¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢ÙÃüÌâ¡°?x¡ÊR£¬x2¡Ý0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬x2¡Ü0¡±£»
¢ÚÏßÐÔÏà¹ØÏµÊýrµÄ¾ø¶ÔÖµÔ½½Ó½üÓÚ1£¬±íÃ÷Á½¸öËæ»ú±äÁ¿ÏßÐÔÏà¹ØÐÔԽǿ£»
¢ÛÈôa£¬b¡Ê[0£¬1]£¬Ôò²»µÈʽa2+b2£¼
1
4
³ÉÁ¢µÄ¸ÅÂÊÊÇ
¦Ð
4
£»
¢Üº¯Êýy=log2£¨x2-ax+2£©ÔÚ[2£¬+¡Þ£©ÉϺãΪÕý£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬
5
2
£©£®
ÆäÖÐÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A¡¢¢Ù¢ÚB¡¢¢Ú¢ÜC¡¢¢Ú¢Û¢ÜD¡¢¢Ú¢Û
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺¼òÒ×Âß¼­
·ÖÎö£º¢Ù°´ÕÕÈ«³ÆÃüÌâµÄ·ñ¶¨·½·¨Åжϼ´¿É£»
¢ÚÏßÐÔÏà¹ØÏµÊýµÄȡֵ·¶Î§ÊÇ[-1£¬1]£¬¾ø¶ÔÖµÔ½´ó£¬Ïà¹ØÐÔԽǿ£¬ÒÔ´ËÅжϣ»
¢ÛÕâÊÇÒ»¸ö¼¸ºÎ¸ÅÐÍÎÊÌ⣬ÓÃÃæ»ý±ÈÇó¸ÅÂÊ£»
¢ÜÖ»Ð躯Êýy=x2-ax+2ÔÚ[2£¬+¡Þ£©ÉϵÄ×îСֵ´óÓÚ1¼´¿É£¬È»ºó´Óº¯ÊýµÄµ¥µ÷ÐÔÈëÊÖ·ÖÎö¼´¿É£®
½â´ð£º ½â£º¶ÔÓÚ¢Ù£¬ÃüÌâ¡°?x¡ÊR£¬x2¡Ý0¡±µÄ·ñ¶¨Îª¡°?x¡ÊR£¬x2£¼0¡±£¬¹Ê¢Ù´íÎó£»
¶ÔÓÚ¢Ú£¬¸ù¾ÝÏßÐÔÏà¹ØÏµÊýµÄÐÔÖÊ¿ÉÖª£¬Ïà¹ØÏµÊýµÄ¾ø¶ÔÖµÔ½´ó£¬Ô½½Ó½üÓÚ1£¬Á½¸öËæ»ú±äÁ¿µÄÏßÐÔÏà¹ØÐÔԽǿ£¬Ò»°ãµÄ£¬ÎÒÃÇÈÏΪ£¬µ±¾ø¶ÔÖµ´óÓÚ0.75ʱ£¬ÎÒÃÇ˵Á½¸öËæ»ú±äÁ¿¾ßÓкÜÇ¿µÄÏà¹ØÐÔ£¬¹Ê¢ÚÕýÈ·£»
¶ÔÓÚ¢Û£¬ÕâÊÇÒ»¸ö¼¸ºÎ¸ÅÐÍ£¬Óɵ㣨a£¬b£©Î§³ÉµÄÇøÓòΪֱÏßx=0£¬y=0£¬x=1£¬y=1Χ³ÉµÄÕý·½ÐΣ¬Ãæ»ýΪ1£¬¶øa2+b2£¼
1
4
±íʾµÄÊÇÔ²ÐÄΪ£¨0£¬0£©£¬°ë¾¶Îª
1
2
µÄÔ²ÔÚµÚÒ»ÏóÏ޵IJ¿·Ö£¬Ãæ»ýΪ
¦Ð
16
£¬ËùÒԸò»µÈʽ³ÉÁ¢µÄ¸ÅÂÊΪ
¦Ð
16
£®¹Ê¢Û´íÎó£»
¶ÔÓڢܣ¬ÓÉÌâÒâµÃx2-ax+2£¾1ÔÚ[2£¬+¡Þ£©ÉϺã³ÉÁ¢£¬¼´a£¼
x2+1
x
=x+
1
x
ÔÚ[2£¬+¡Þ£©ÉϺã³ÉÁ¢£¬
ÒòΪº¯Êýy=x+
1
x
ÔÚ2£¬+¡Þ£©ÊÇÔöº¯Êý£¬ËùÒÔa£¼ymin=2+
1
2
=
5
2
¼´ÎªËùÇ󣬹ʢÜÕýÈ·£®
¹ÊÑ¡B
µãÆÀ£º±¾Ìâ½èÖúÓÚ¼òÒ×Âß¼­¿¼²éÁËÈ«³ÆÃüÌâµÄ·ñ¶¨¡¢¼¸ºÎ¸ÅÂʵÄÇ󷨡¢¸´ºÏº¯Êýµ¥µ÷ÐÔµÄÅжϵÈÎÊÌ⣬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ͶÖÀÁ½¿ÅÖʵؾùÔȵÄ÷»×Ó£¬ÔòÏòÉϵĵãÊýÖ®»ýΪ6µÄ¸ÅÂʵÈÓÚ£¨¡¡¡¡£©
A¡¢
1
18
B¡¢
1
9
C¡¢
1
6
D¡¢
5
36

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

»­³öÏÂÁк¯ÊýµÄͼÏó£º
y=|x+1|+|x-2|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª
a
=£¨1£¬
1
2
£¬3£©£¬
b
=£¨
1
2
£¬1£¬1£©£¬ÇÒ
a
£¬
b
¾ùÔÚÆ½Ãæ¦ÁÄÚ£¬Ö±ÏßlµÄ·½ÏòÏòÁ¿
¦Ô
=£¨
1
2
£¬0£¬1£©£¬Ôò£¨¡¡¡¡£©
A¡¢l?¦ÁB¡¢lÓë¦ÁÏཻ
C¡¢l¡Î¦ÁD¡¢l?¦Á»òl¡Î¦Á

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÒÑÖªa1=
1
5
£¬ÇÒ¶ÔÈÎÒâÕýÕûÊýmn¶¼ÓÐam+n=am•an£®ÈôSn£¼tºã³ÉÁ¢£¬ÔòʵÊýtµÄ×îСֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèa£¬bÊÇÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦ÂÊÇÁ½¸ö²»Í¬µÄÆ½Ãæ£¬ÔòÏÂÁÐËĸöÃüÌâÖÐ
£¨1£©Èôa¡Í¦Á£¬a?¦Â£¬Ôò¦Á¡Í¦Â£»
£¨2£©Èôa¡Î¦Á£¬¦Á¡Í¦Â£¬Ôòa¡Í¦Â£»
£¨3£©Èôa¡Í¦Â£¬¦Á¡Í¦Â£¬Ôòa¡Î¦Á£»
£¨4£©Èôa¡Í¦Á£¬b¡Í¦Á£¬Ôòa¡Îb£®
ÆäÖÐËùÓÐÕæÃüÌâµÄÐòºÅÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÁ½¸ö²»Í¬µÄÆ½Ãæ¦Á£¬¦ÂºÍÁ½Ìõ²»ÖغϵÄÖ±Ïßm£¬n£¬ÓÐÏÂÁÐËĸöÃüÌ⣺
£¨1£©Èôm¡Î¦Á£¬n¡Î¦Á£¬Ôòm¡În£»
£¨2£©Èôm¡Î¦Á£¬n¡Î¦Á£¬m£¬n?¦Â£¬Ôò¦Á¡Î¦Â£»
£¨3£©Èôm¡În£¬n?¦Á£¬Ôòm¡Î¦Á£»
£¨4£©Èô¦Á¡Î¦Â£¬m?¦Á£¬Ôòm¡Î¦Â£®
ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¿Õ¼äÁ½µãA£¨4£¬-7£¬1£©£¬B£¨6£¬2£¬z£©£¬Èô|AB|=11£¬Ôòz=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¡÷ABCµÄÈý¸ö¶¥µã×ø±ê·Ö±ðΪA£¨8£¬5£©£¬B£¨4£¬-2£©£¬C£¨-6£¬3£©£¬
£¨¢ñ£©ÇóAC±ßÉϵÄÖÐÏßËùÔÚÖ±Ïß·½³Ì£»
£¨¢ò£©ÇóAB±ßÉϵĸßËùÔÚÖ±Ïß·½³Ì£»
£¨¢ó£©ÇóBC±ßµÄ´¹Ö±Æ½·ÖÏߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸