精英家教网 > 高中数学 > 题目详情

【题目】已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是(

A.10010B.10020C.20010D.20020

【答案】D

【解析】

根据图1可得总体个数,根据抽取比例可得样本容量,计算分层抽样的抽取比例,求得样本中的高中学生数,再利用图2求得样本中抽取的高中学生近视人数.

由图1知:总体个数为3500+2000+4500=10000

∴样本容量=10000×2%=200

分层抽样抽取的比例为

∴高中生抽取的学生数为2000×=40人,

∴抽取的高中生近视人数为40×50%=20.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个顶点分别为A(﹣30),B21),C(﹣23),试求:

1)边AC所在直线的方程;

2BC边上的中线AD所在直线的方程;

3BC边上的高AE所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱锥S-ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的为( )

A.①③B.③④C.①②D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点轴上,中心在坐标原点,长轴长为4,短轴长为.

1)求椭圆的标准方程;

2)是否存在过的直线,使得直线与椭圆交于?若存在,请求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCDRtABCRtBCD拼接而成,其中∠BAC=∠BCD90°,∠DBC30°ABAC,将△ABC沿着BC折起,

1)若,求异面直线ABCD所成角的余弦值;

2)当四面体ABCD的体积最大时,求二面角ABCD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有分别写有123455张卡片.

1)从中随机抽取2张,求两张卡片上数字和为5的概率;

2)从中随机抽取1张,放回后再随机抽取1张,求抽得的第一张卡片上的数大于第二张卡片上的数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆近年来旅游业高速发展,有很多著名景点,如洪崖洞、磁器口、朝天门、李子坝等.为了解端午节当日朝天门景点游客年龄的分布情况,从年龄在22~52岁之间的旅游客中随机抽取了1000人,制作了如图的频率分布直方图.

(1)求抽取的1000人的年龄的平均数、中位数;(每一组的年龄取中间值)

(2)现从中按照分层抽样抽取8人,再从这8人中随机抽取3人,记这3人中年龄在的人数为,求的分布列及.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一名高二学生盼望2020年进入某名牌大学学习,假设该名牌大学有以下条件之一均可录取:①2020年2月通过考试进入国家数学奥赛集训队(集训队从2019年10月省数学竞赛一等奖中选拔):②2020年3月自主招生考试通过并且达到2020年6月高考重点分数线,③2020年6月高考达到该校录取分数线(该校录取分数线高于重点线),该学生具备参加省数学竞赛、自主招生和高考的资格且估计自己通过各种考试的概率如下表

省数学竞赛一等奖

自主招生通过

高考达重点线

高考达该校分数线

0.5

0.6

0.9

0.7

若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取)

(Ⅰ)求该学生参加自主招生考试的概率;

(Ⅱ)求该学生参加考试的次数的分布列及数学期望;

(Ⅲ)求该学生被该校录取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P-ABCD中,侧面底面ABCD,底面ABCD是直角梯形,

1)求证:平面PBD

2)设E为侧棱PC上异于端点的一点,,试确定的值,使得二面角E-BD-P的余弦值为

查看答案和解析>>

同步练习册答案