分析 (1)根据分段函数的特点,代值计算即可.
(2)解答时可以先根据题意写出数列通项公式的分段函数形式;然后由于数列是递增的即可获得两个条件即:对应等差数列通项n的系数大于零和a7>a6.由此即可获得解答.
解答 解:(1)当a=2时,若f(x)=1,
则$\left\{\begin{array}{l}{2x+3=1}\\{x≤6}\end{array}\right.$或$\left\{\begin{array}{l}{{2}^{x-5}=1}\\{x>6}\end{array}\right.$,
解得x=-1;
(2)∵数列{an},an=f(n)(n∈N*),且数列{an}是递增数列,
∴函数f(x)在(0,+∞)上为增函数,
∴$\left\{\begin{array}{l}{4-a>0}\\{a>1}\\{6(4-a)+3<{a}^{2}}\end{array}\right.$,
解得3<a<4,
∴a的范围为(3,4)
故答案为:-1,(3,4)
点评 此题考查的是分段函数与数列的综合问题.在解答过程当中等差数列的性质、函数的单调性以及分段函数的知识都得到了充分的体现.值得同学们体会反思.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | i>9 | B. | i<9 | C. | i>18 | D. | i<18 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2] | B. | (0,2] | C. | [-2,2] | D. | (-∞,-2]∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com