精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC—A1B1C1中,,直线B1C与平面ABC成30°角。


 
  (1)求证:平面B1AC⊥平面ABB1A1

  (2)求二面角B——A的正切值。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题14分)
如图,在直三棱柱中,,点在边上,
(1)求证:平面
(2)如果点的中点,求证:平面 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



( 本小题满分12分)
(普通中学做)如图,四棱锥P—ABCD中,底面ABCD 为矩形,AB=8,AD=4,侧面PAD为等边三角形,并且与底面所成二面角为60
求PA与底面ABCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正三棱柱的各棱长都为为棱上的动点.

(Ⅰ)当时,求证:
(Ⅱ)若,求二面角的大小;              
(Ⅲ)在(Ⅱ)的条件下,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图如右图所示,则该凸多面体的体积(     )
A.B.1C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题


是两条不同的直线,是一个平面,则下列命题正确的是
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图5所示,在正方体E是棱的中点。
(Ⅰ)求直线BE的平面所成的角的正弦值;
(II)在棱上是否存在一点F,使平面证明你的结论。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在正方体ABCDA1B1C1D1中,MN分别是棱ABCC1的中点,△MB1P的顶点P在棱CC1与棱C1D1上运动,
有以下四个命题:
A.平面MB1PND1
B.平面MB1P⊥平面ND1A1
C.△MB1P在底面ABCD上的射影图形的面积为定值;
D.△MB1P在侧面D1C1CD上的射影图形是三角形.
其中正确命题的序号是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知体积为的正三棱锥的外接球的球心为O,满足, 则该三棱锥外接球的体积为              

查看答案和解析>>

同步练习册答案