分析 由已知结合三棱锥和正三棱柱的几何特征,可得此三棱锥外接球,即为以△ABC为底面以SA为高的正三棱柱的外接球,分别求出棱锥底面半径r,和球心距d,代入R=$\sqrt{{r}^{2}+{d}^{2}}$,可得球的半径R,即可求出三棱锥S-ABC的外接球的表面积.
解答 解:根据已知中底面△ABC是边长为$\sqrt{3}$的等边三角形,SA垂直于底面ABC,
可得此三棱锥外接球,即为以△ABC为底面以SA为高的正三棱柱的外接球
∵△ABC是边长为$\sqrt{3}$的正三角形,
∴△ABC的外接圆半径r=1,
球心到△ABC的外接圆圆心的距离d=$\frac{1}{2}$
故球的半径R=$\sqrt{{r}^{2}+{d}^{2}}$=$\frac{\sqrt{5}}{2}$
故三棱锥P-ABC外接球的表面积S=4πR2=5π.
故答案为5π.
点评 本题考查的知识点是球内接多面体,求出球的半径R=$\sqrt{{r}^{2}+{d}^{2}}$是解答的关键.
科目:高中数学 来源: 题型:选择题
| A. | 椭圆 | B. | 双曲线 | C. | 线段 | D. | 两条射线 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{12}$ | B. | $\frac{5}{3}$ | C. | 1 | D. | $\frac{13}{12}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com