精英家教网 > 高中数学 > 题目详情
13.已知集合A={x|-4<x<1},B={x|($\frac{1}{2}$)x≥2}.
(1)求A∩B,A∪B;
(2)设函数f(x)=$\sqrt{lo{g}_{4}(2x-3)}$的定义域为C,求(∁RA)∩C.

分析 (1)由指数的运算、指数函数的性质求出B,由交、并集的运算分别求出A∩B,A∪B;
(2)由对数函数的性质求出定义域C,由补、交集的运算分别求出∁RA,∁RA)∩C.

解答 解:(1)由($\frac{1}{2}$)x≥2得($\frac{1}{2}$)x≥=($\frac{1}{2}$)-1
则x≤-1,即B={x|x≤-1},
∵A={x|-4<x<1},
∴A∩B={x|-4<x≤-1},A∪B={x|x<1};
(2)由题意得,$\left\{\begin{array}{l}{2x-3>0}\\{lo{g}_{4}^{(2x-3)}≥0}\end{array}\right.$,
即$\left\{\begin{array}{l}{2x-3>0}\\{lo{g}_{4}^{(2x-3)}≥lo{g}_{4}^{1}}\end{array}\right.$,解得x≥2,
∴函数f(x)的定义域C={x|x≥2},
由A={x|-4<x<1}得,∁RA={x|x≤-4或x≥1},
∴(∁RA)∩C={x|x≥2}.

点评 本题考查了交、并、补集的混合运算,以及对数函数的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,在长方体ABCD-A1B1C1D1中,AB=2,BC=4,AA1=a,点E、F分别为AB、C1B的中点.
(Ⅰ)求证:EF∥平面ACC1A1
(Ⅱ)如果∠A1FE=90°,写出a的值;(只写出结果即可,不用写过程)
(Ⅲ)在(Ⅱ)的条件下,求点B到平面A1EF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解下列关于x的不等式.
(1)$\frac{2x+3}{x-2}$>1;
(2)|2x2-3x+5|≤7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知三棱锥S-ABC中,底面ABC为边长等于$\sqrt{3}$的等边三角形,SA垂直于底面ABC,SA=1,那么三棱锥S-ABC的外接球的表面积为5π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设f:N*→N*,函数y=f(k)是定义在N*上的增函数,且f(f(k))=3k,则f(9)=18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.经过抛物线y2=8x的焦点和顶点且与准线相切的圆的半径为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若a=2${\;}^{\frac{1}{3}}}$,b=ln2,c=log5sin$\frac{π}{3}$,则(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C:$\frac{x^2}{4}$+$\frac{y^2}{3}$=1,直线l:$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数).
(1)写出曲线C的参数方程,直线l的普通方程;
(2)设M(1,2),直线l与曲线C交点为A、B,试求|MA|•|MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给定命题p:y=tanx-1只有一个零点,q:y=lg(x2+1)的值域[0,+∞),则以下为真命题的是(  )
A.pB.¬qC.p∧qD.¬p∨q

查看答案和解析>>

同步练习册答案