精英家教网 > 高中数学 > 题目详情
1.函数y=$\sqrt{x-1}$+1的值域为(  )
A.(0,+∞)B.(1,+∞)C.[0,+∞)D.[1,+∞)

分析 由题意可得出函数y=$\sqrt{x-1}$+1是增函数,由单调性即可求值域.

解答 解:函数y=$\sqrt{x-1}$+1,定义域为[1,+∞),
根据幂函数性质可知,函数y为增函数,
当x=1时,函数y取得最小值为1,
函数y=$\sqrt{x-1}$+1的值域为[1,+∞),
故选D

点评 本题考查幂函数的单调性,属于函数性质应用题求解值域问题,较容易.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知平面向量$\overrightarrow a=(-2,1)$,$\overrightarrow b=(1,2)$,则$|{\overrightarrow a-2\overrightarrow b}|$的值是(  )
A.1B.5C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱柱ABCD-A1B1C1D1中,点E,F分别为A1B,C1C的中点.
(1)求证:EF∥平面ABCD;
(2)若四棱柱ABCD-A1B1C1D1是长方体,且AB=AD=2AA1,求平面A1BF与平面ABCD所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|2x+1|+|2x-1|.
(1)求证:f(x)的最小值等于2;
(2)若对任意实数a和b,$|{2a+b}|+|a|-\frac{1}{2}|{a+b}|f(x)≥0$,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.圆的任何一对平行切线间的距离总是相等的,即圆在任意方向都有相同的宽度,具有这种性质的曲线可称为“等宽曲线”.事实上存在着大量的非圆等宽曲线,以工艺学家鲁列斯( Reuleaux)命名的鲁列斯曲边三角形,就是著名的非圆等宽曲线.它的画法(如图1):画一个等边三角形ABC,分别以A,B,C为圆心,边长为半径,作圆弧$\widehat{BC},\widehat{CA},\widehat{AB}$,这三段圆弧围成的图形就是鲁列斯曲边三角形.它的宽度等于原来等边三角形的边长.等宽曲线都可以放在边长等于曲线宽度的正方形内(如图2).

在图2中的正方形内随机取一点,则这一点落在鲁列斯曲边三角形内的概率为(  )
A.$\frac{π}{8}$B.$\frac{{2π-3\sqrt{3}}}{4}$C.$\frac{{π-\sqrt{2}}}{2}$D.$\frac{{π-\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知三棱锥A-BCD的四个顶点A,B,C,D都在球O的表面上,BC⊥CD,AC⊥平面BCD,且AC=2$\sqrt{2}$,BC=CD=2,则球O的表面积为(  )
A.B.C.16πD.2$\sqrt{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1,F2,点$P(1,\frac{3}{2})$在椭圆C上,满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=$\frac{9}{4}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)直线l1过点P,且与椭圆只有一个公共点,直线l2与l1的倾斜角互补,且与椭圆交于异于点P的两点M,N,与直线x=1交于点K(K介于M,N两点之间).
(ⅰ)求证:|PM|•|KN|=|PN|•|KM|;
(ⅱ)是否存在直线l2,使得直线l1、l2、PM、PN的斜率按某种排序能构成等比数列?若能,求出l2的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.数列{an}满足a1=$\frac{1}{3}$,且对任意n∈N*,an+1=an2+an,cn=$\frac{1}{{{a_n}+1}}$,数列{cn}的前n项和为Sn,则S2017的整数部分是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知平面内一动点M与两定点B1(0,-1)和B2(0,1)连线的斜率之积等于-$\frac{1}{2}$
(Ⅰ)求动点M的轨迹E的方程:
(Ⅱ)设直线l:y=x+m(m≠0)与轨迹E交于A、B两点,线段AB的垂直平分线交x轴于点P,当m变化时,求△PAB面积的最大值.

查看答案和解析>>

同步练习册答案