精英家教网 > 高中数学 > 题目详情
6.7个同学站成一排,甲、乙、丙必须相邻,且丙不能在排头、尾的排法有多少种?

分析 采用间接法,先排甲、乙、丙必须相邻的所有种数,再排除丙在排头、尾的种数即可.

解答 解:因为甲、乙、丙必须相邻,先把甲、乙、丙捆绑在一起看作一个复合元素,和另外的4人全排有${A}_{3}^{3}•{A}_{5}^{5}$=720种,
其中丙在排头、尾的有2${A}_{2}^{2}•{A}_{4}^{4}$=96种,
故7个同学站成一排,甲、乙、丙必须相邻,且丙不能在排头、尾的排法有720-96=624种.

点评 本题考查了排列的问题,相邻问题采用捆绑,正难则反的原则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列四个命题:
①样本相关系数r满足:|r|≤1,而且|r|越接近于1,线性相关关系越强:
②回归直线就是散点图中经过样本数据点最多的那条直线;
③命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题;
④己知点A(-l,0),B(l,0),若|PA|-|PB|=2,则动点P的轨迹为双曲线的一支.
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$|{\overrightarrow a-\overrightarrow b}|=\sqrt{6},|{\overrightarrow a+\overrightarrow b}|=\sqrt{10}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知|a|>1,|b|>1,证明|a+b|+|a-b|>2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若数列{an}对任意的正整数n都有an+λ2=an×an+2λ成立,则称数列{an}为“λ阶梯等比数列”,$\frac{{a}_{n+λ}}{{a}_{n}}$的值称为“阶梯比”,若数列{an}是3阶等比数列且a1=1,a4=2,则a2014=2671

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}\frac{1}{16}{x^2}(0≤x≤2)\\{(\frac{1}{2})^x}(x>2)\end{array}$,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是(  )
A.(-$\frac{5}{2}$,-$\frac{1}{4}$)B.(-$\frac{1}{2}$,-$\frac{1}{4}$)C.(-$\frac{1}{2}$,-$\frac{1}{4}$)∪(-$\frac{1}{4}$,-$\frac{1}{8}$)D.(-$\frac{1}{2}$,-$\frac{1}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≥0}\\{-x,x<0}\end{array}\right.$,若关于x的方程f(x)=t有3个不等根x1,x2,x3,且x1<x2<x3,则x3-x1的取值范围为(  )
A.(2,$\frac{5}{2}$]B.(2,$\frac{9}{4}$]C.(2,$\frac{11}{4}$]D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100),据此解答如下问题.

(1)求全班人数及分数在[80,100]之间的频率;
(2)现从分数在[80,100]之间的试卷中任取 3 份分析学生失分情况,设抽取的试卷分数在[90,100]的份数为 X,求 X 的分布列和数学望期.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数y=f(x)与y=f-1(x)互为反函数,又y=f-1(x+1)与y=g(x)的图象关于直线y=x对称,若f(x)=${log_{\frac{1}{2}}}({x^2}+2)$(x>0),则g(x)=log${\;}_{\frac{1}{2}}$(x2+2)-1(x>0).

查看答案和解析>>

同步练习册答案