10£®ÏÂÁÐËĸöÃüÌâÖУº
¢Ù´ÓÔÈËÙ´«µÝµÄ²úÆ·Éú²úÁ÷Ë®ÏßÉÏ£¬ÖʼìԱÿ10·ÖÖÓ³éȡһ¼þ²úÆ·½øÐÐijÏîÖ¸±ê¼ì²â£¬ÕâÑùµÄ³éÑùÊÇ·Ö²ã³éÑù£®
¢ÚÎÒÃǾ­³£ÀûÓÃÏà¹ØÖ¸ÊýR2À´¿Ì»­»Ø¹éÄ£Ð͵ÄÄâºÏЧ¹û£¬R2µÄÖµÔ½´ó£¬ËµÃ÷»Ø¹éÄ£Ð͵ÄÄâºÏЧ¹ûÔ½ºÃ£»
¢ÛÔÚijÏî²âÁ¿ÖУ¬²âÁ¿½á¹û¦Î·þ´ÓÕý̬·Ö²¼N£¨1£¬¦Ò2£©£¨¦Ò£¾0£©£¬Èô¦ÎÔÚ£¨0£¬1£©ÄÚȡֵµÄ¸ÅÂÊΪ0.4£¬Ôò¦ÎÔÚ£¨0£¬2£©È¡ÖµµÄ¸ÅÂÊΪ0.8£»
¢ÜÔÚÁ½¸ö·ÖÀà±äÁ¿µÄ¶ÀÁ¢ÐÔ¼ìÑéÖУ¬Èô·ÖÀà±äÁ¿XÓëYµÄK2¹Û²âÖµk0Ϊ0.4£¬Åжϡ°XÓëYÓйØÏµ¡±µÄ°ÑÎճ̶ÈÔ½´ó£®
ÆäÖÐÕæÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

·ÖÎö °´ÕÕ·Ö²ã³éÑùµÄ¶¨ÒåÅжϢٵÄÕýÎó£»°´ÕÕÏà¹ØÏµÊýµÄÐÔÖÊÅжϢڵÄÕýÎó£»ÀûÓÃÕý̬·Ö²¼µÄ¹æÂÉÅжϢ۵ÄÕýÎó£®ÀûÓöÀÁ¢ÐÔ¼ìÑéÅжϢܵÄÕýÎó

½â´ð ½â£º¢Ù´ÓÔÈËÙ´«µÝµÄ²úÆ·Éú²úÁ÷Ë®ÏßÉÏ£¬
ÖʼìԱÿ10·ÖÖÓ´ÓÖгéȡһ¼þ²úÆ·½øÐÐijÏîÖ¸±ê¼ì²â£¬
ÕâÑùµÄ³éÑùÊÇϵͳ³éÑù£¬¹Ê¢Ù´íÎó£»
¢ÚÏà¹ØÖ¸ÊýR2Ô½´ó£¬
˵Ã÷»Ø¹éÄ£Ð͵ÄÄâºÏЧ¹ûÔ½ºÃ£»
¹Ê¢ÚÕýÈ·£»
¢ÛÔÚijÏî²âÁ¿ÖУ¬²âÁ¿½á¹û¦Î·þ´ÓÕý̬·Ö²¼N£¨1£¬¦Ò2£©£¨¦Ò£¾0£©£®
¡àÕý̬·Ö²¼ÇúÏß¹ØÓÚu=1¶Ô³Æ£¬¦ÎÔÚ£¨0£¬1£©£¬£¨1£¬2£©ÄÚȡֵµÄ¸ÅÂÊÏàµÈ£¬
Èô¦ÎÔÚ£¨0£¬1£©ÄÚȡֵµÄ¸ÅÂÊΪ0.4£¬
Ôò¦ÎÔÚ£¨0£¬2£©ÄÚȡֵµÄ¸ÅÂÊΪ0.8£¬
·ûºÏÕý̬·Ö²¼µÄÌØµã£¬¹Ê¢ÛÕýÈ·£®
¢ÜÔÚÁ½¸ö·ÖÀà±äÁ¿µÄ¶ÀÁ¢ÐÔ¼ìÑéÖУ¬Èô·ÖÀà±äÁ¿XÓëYµÄK2¹Û²âÖµk0Ϊ0.4£¬Åжϡ°XÓëYÓйØÏµ¡±µÄ°ÑÎճ̶Ȳ»´ó£¬¹Ê¢Ü´íÎó£»
¹ÊÕæÃüÌâµÄ¸öÊýΪ2¸ö£¬
¹ÊÑ¡£ºC

µãÆÀ ±¾Ì⿼²éϵͳÓë³éÑùµÄ¹ØÏµ£¬ÏßÐÔÏà¹Ø£¬¶ÀÁ¢ÐÔ¼ìÑéÒÔ¼°Õý̬·Ö²¼µÄÓ¦Ó㬻ù±¾ÖªÊ¶µÄ¿¼²é£¬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªµãA£¨-1£¬0£©£¬B£¨0£¬1£©£¬µãPÊÇÔ²£¨x-a£©2+y2=1Éϵ͝µã£¬µ±ÊýÁ¿»ý$\overrightarrow{AB}$•$\overrightarrow{AP}$È¡µÃ×îСֵ2ʱ£¬µãPµÄ×ø±êΪ£¨1+$\frac{\sqrt{2}}{2}$£¬$\frac{\sqrt{2}}{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®É躯Êýf£¨x£©=lnx-ax£¨a¡ÊR£©£¨ÆäÖÐe=2.71828¡­£©£®
£¨¢ñ£©ÅжϺ¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ò£©º¯Êýf£¨x£©£¼0ÔÚ£¨0£¬+¡Þ£©ÉϺã³ÉÁ¢Ê±£¬ÇóaµÄȡֵ·¶Î§£»
£¨¢ó£©Ö¤Ã÷£ºµ±x¡Ê£¨1£¬+¡Þ£©Ê±£¬$\frac{x}{{{e^{x-1}}}}•{x^{\frac{1}{x-1}}}£¼e$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÔ²M£º£¨x+$\sqrt{3}$£©2+y2=24£¬¶¨µãN£¨$\sqrt{3}$£¬0£©£¬µãPΪԲMÉϵ͝µã£¬µãQÔÚNPÉÏ£»µãGÔÚMPÉÏ£¬ÇÒÂú×ã$\overrightarrow{NP}$=-2$\overrightarrow{PQ}$£¬$\overrightarrow{CQ}$•$\overrightarrow{NP}$=0
£¨1£©ÇóµãGµÄ¹ì¼£CµÄ·½³Ì
£¨2£©¹ýµã£¨2£¬0£©×÷Ö±ÏßlÓëÖáÏßC½»ÓÚA£¬BÁ½µã£»OÊÇ×ø±êÔ­µã£¬Éè$\overrightarrow{OS}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$£»ÊÇ·ñ´æÔÚÕâÑùµÄÖ±Ïßl£¬Ê¹ËıßÐÎOASBµÄ¶Ô½ÇÏßÏàµÈ£¨¼´|OS|=|AB|£©£¿Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÍÖÔ²C1µÄÖÐÐÄÔÚ×ø±êÔ­µã£¬Á½¸ö½¹µã·Ö±ðΪF1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬µãA£¨1£¬$\frac{\sqrt{2}}{2}$£©ÔÚÍÖÔ²C1ÉÏ£¬¹ýµãAµÄÖ±ÏßLÓëÅ×ÎïÏßC2£ºx2=4y½»ÓÚB£¬CÁ½µã£¬Å×ÎïÏßC2ÔÚµãB£¬C´¦µÄÇÐÏß·Ö±ðΪl1£¬l2£¬ÇÒl1Óël2½»ÓÚµãP£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚÂú×ã|$\overrightarrow{P{F}_{1}}$|$+|\overrightarrow{P{F}_{2}}|$=|$\overrightarrow{A{F}_{1}}$|$+|\overrightarrow{A{F}_{2}}|$µÄµãP£¬Èô´æÔÚ£¬Ö¸³öÕâÑùµÄµãPÓм¸¸ö£¨²»±ØÇó³öµãPµÄ×ø±ê£©£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÔÚÍ¬Ò»×ø±êϵÖУ¬½«ÍÖÔ²$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1±ä»»³Éµ¥Î»Ô²µÄÉìËõ±ä»»ÊÇ£¨¡¡¡¡£©
A£®¦Õ£º$\left\{\begin{array}{l}{x¡ä=5x}\\{{y}^{¡ä}=4y}\end{array}\right.$B£®¦Õ£º$\left\{\begin{array}{l}{{x}^{¡ä}=4x}\\{{y}^{¡ä}=5y}\end{array}\right.$
C£®¦Õ£º$\left\{\begin{array}{l}{{x}^{¡ä}=\frac{1}{4}x}\\{{y}^{¡ä}=\frac{1}{5}y}\end{array}\right.$D£®¦Õ£º$\left\{\begin{array}{l}{{x}^{¡ä}=\frac{1}{5}x}\\{{y}^{¡ä}=\frac{1}{4}y}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®µ±x¡Ê[-1£¬1]ʱ£¬º¯Êýf£¨x£©=ex£¨sinx-cosx£©µÄ×îСֵÊÇ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÇúÏßy=2x-x3Ôڵ㣨1£¬1£©´¦µÄÇÐÏß·½³ÌΪx+y-2=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=ln£¨1+ax£©-ax£¬£¨ÆäÖÐaΪʵÊý£¬ÇÒa¡Ù0£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©¹ØÓÚx·½³Ìf£¨x£©-a=0ÔÚ[-1£¬1]ÉÏÊÇ·ñÓÐÁ½¸ö²»µÈʵ¸ù£¿ÈôÓУ¬ÇóʵÊýaµÄȡֵ·¶Î§£»ÈôûÓУ¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÈôÊýÁÐ{an}Âú×㣺a1=1£¬an+1=£¨1+$\frac{1}{{n}^{2}+n}$£©an+$\frac{1}{{2}^{n}}$£¬n¡ÊN*£¬Ö¤Ã÷£º¶ÔÓÚÈÎÒâµÄÕýÕûÊýn£¬¶¼ÓÐan£¼e2£¬ÆäÖÐÎÞÀíÊýe=2.71828£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸