【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),直线
过原点且倾斜角为
,以原点为极点,
轴的正半轴为极轴建立极坐标系.
(1)求曲线
和直线
的极坐标方程;
(2)若相交于不同的两点
,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知曲线
,把
上各点横坐标伸长为原来的2倍,纵坐标不变,得到函数
的图象,关于
有下述四个结论:
(1)函数
在
上是减函数;
(2)当
,且
时,
,则
;
(3)函数
(其中
)的最小值为
.
其中正确结论的个数为( ).
A.1B.2C.3D.0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】非典和新冠肺炎两场疫情告诉我们:应坚决杜绝食用野生动物,提倡文明健康,绿色环保的生活方式.在我国抗击新冠肺炎期间,某校开展一次有关病毒的网络科普讲座.高三年级男生60人,女生40人参加.按分层抽样的方法,在100名同学中选出5人,则男生中选出________人.再从此5人中选出两名同学作为联络人,则这两名联络人中男女都有的概率是________.(第1空2分,第2空3分)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)函数
,讨论
的单调性;
(2)曲线
在点
处的切线为
,是否存在这样的点
使得直线
与曲线
也相切,若存在,判断满足条件的点
的个数,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】.对于n∈N*(n≥2),定义一个如下数阵:
,其中对任意的1≤i≤n,1≤j≤n,当i能整除j时,aij=1;当i不能整除j时,aij=0.设
.
(Ⅰ)当n=6时,试写出数阵A66并计算
;
(Ⅱ)若[x]表示不超过x的最大整数,求证:
;
(Ⅲ)若
,
,求证:g(n)﹣1<f(n)<g(n)+1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.根据过去50周的资料显示,该基地周光照量
(小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量
(千克)与使用某种液体肥料的质量
(千克)之间的关系如图所示.
![]()
(1)依据上图,是否可用线性回归模型拟合
与
的关系?请计算相关系数
并加以说明(精确到0.01).(若
,则线性相关程度很高,可用线性回归模型拟合)
(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量
限制,并有如下关系:
周光照量 |
|
|
|
光照控制仪运行台数 | 3 | 2 | 1 |
若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以频率作为概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?
附:相关系数公式
,
参考数据:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在
实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图,记综合评分为80分及以上的花苗为优质花苗.
![]()
(1)用样本估计总体,以频率作为概率,若在
两块实验地随机抽取3株花苗,求所抽取的花苗中优质花苗数的分布列和数学期望;
(2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培育方法有关.
优质花苗 | 非优质花苗 | 合计 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合计 |
附:下面的临界值表仅供参考.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
(参考公式:
,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知菱形
的对角线
交于点
,点
为线段
的中点,
,
,将三角形
沿线段
折起到
的位置,
,如图2所示.
![]()
(Ⅰ)证明:平面
平面
;
(Ⅱ)求三棱锥
的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com