精英家教网 > 高中数学 > 题目详情
设平面α∥平面β,直线a?α,点B∈β,则下列三个命题中为真命题的个数为(  )
①在β内过点B的所有直线中存在唯一一条与a垂直的直线
②过直线a存在唯一一条与β垂直的平面
③在β内过点B的所有直线中存在唯一一条与a平行的直线.
A、0B、1C、2D、3
考点:命题的真假判断与应用
专题:综合题,推理和证明
分析:对3个命题分别进行判断,即可得出结论.
解答: 解:①B点与a确定唯一的一个平面γ与β相交,设交线为b,β内过点B的所有直线中存在唯一一条与b垂直的直线,所以β内过点B的所有直线中存在唯一一条与a垂直的直线,故正确;
②过直线a上一点,作平面β的垂线,过垂线的平面与β垂直,故正确;
③B点与a确定唯一的一个平面γ与β相交,设交线为b,由面面平行的性质定理知a∥b,故在β内过点B的所有直线中存在唯一一条与a平行的直线,正确.
故选:D.
点评:本题考查命题的真假判断,考查学生分析解决问题的能力,知识综合.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为0.4.
网购金额(元)频数频率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.3
(2500,3000]yq
合计1001.00
(Ⅰ)确定x,y,p,q的值,并补全频率分布直方图;
(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.
①请将列联表补充完整;
网龄3年以上网龄不足3年合计
购物金额在2000元以上35
购物金额在2000元以下20
合计100
②并据此列联表判断,是否有97.5%的把握认为网购金额超过2000元与网龄在三年以上有关?
参考数据:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=3-x与坐标轴所围图形的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次“爱眼日”活动中,随机抽取高三(1)班6名男生和6名女生的视力数据制成茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶):视力为5.0(含5.0)以上为正常视力,其他为近视眼.
(1)若该班有50人,用样本数据估计全班同学的平均视力和有多少人近视?
(2)为了进一步了解近视的成因、从男、女两组中随机各选取一名已得近视的同学的视力数据,记为x,y,求事件“|x-y|≤0.1”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C为三个不共线的点,P为△ABC所在平面内一点,若
PA
+
PB
=
PC
+
AB
,则点P与△ABC的位置关系是(  )
A、点P在△ABC内部
B、点P在△ABC外部
C、点P在直线AB上
D、点P在直线AC上

查看答案和解析>>

科目:高中数学 来源: 题型:

设y=(sinx)cosx(sinx>0),求y′.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图F1,F2为双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,圆O:x2+y2=a2-b2,过原点的直线与双曲线C交于点P,与圆O交于点M、N,且|PF1|•|PF2|=15,则|PM|•|PN|=(  )
A、5B、30C、225D、15

查看答案和解析>>

科目:高中数学 来源: 题型:

为了调查学生星期天晚上学习时间利用问题,某校从高二年级1000名学生(其中走读生450名,住宿生500名)中,采用分层抽样的方法抽取n名学生进行问卷调查.根据问卷取得了这n名同学每天晚上学习时间(单位:分钟)的数据,按照以下区间分为八组①[0,30),②[30,60),③[60,90),④[90,120),⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240],得到频率分布直方图如图所示.已知抽取的学生中星期天晚上学习时间少于60分钟的人数为5人;
(1)求n的值并补全下列频率分布直方图;
(2)如果把“学生晚上学习时间达到两小时”作为是否充分利用时间的标准,对抽取的n名学生,完成下列2×2列联表:
利用时间充分利用时间不充分总计
走读生
住宿生10
总计
据此资料,你是否认为学生“利用时间是否充分”与走读、住宿有关?
(3)若在第①组、第②组、第⑧组中共抽出3人调查影响有效利用时间的原因,记抽到“学习时间少于60分钟”的学生人数为X,求X的分布列及期望;
参考公式:K2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z1=
3
sinx+isinx,z2=cosx+isinx(i是虚数单位).
(1)当x∈[0,π]且|z1|=|z2|时,求x的值;
(2)设f(x)=z1
.
z2
+
.
z1
•z2,求f(x)的最大值与最小值及相应的x值.

查看答案和解析>>

同步练习册答案