分析 利用二项式展开式的通项公式,令x的指数等于0求出r的值,即可求出展开式中的常数项.
解答 解:$(x\sqrt{2x}-\frac{1}{x})^{5}$展开式的通项公式为
Tr+1=${C}_{5}^{r}$•${(x\sqrt{2x})}^{5-r}$•${(-\frac{1}{x})}^{r}$=${C}_{5}^{r}$•${(\sqrt{2})}^{5-r}$•(-1)r•${x}^{\frac{3(5-r)}{2}-r}$,
令$\frac{3(5-r)}{2}$-r=0,
解得r=3,
所以展开式中的常数项为:
T4=${C}_{5}^{3}$•${(\sqrt{2})}^{2}$•(-1)3=-20.
故答案为:-20.
点评 本题考查了利用二项式展开式的通项公式求常数项的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{5}{7}$ | C. | $\frac{2}{3}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{5}{8}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com