精英家教网 > 高中数学 > 题目详情
3.如图,四边形ABCD是正方形,PD∥MA,MA⊥AD,PM⊥平面 CDM,MA=$\frac{1}{2}$PD=1
(1)求证:平面ABCD⊥平面AMPD
(2)若BC与PM所成角为45°,求二面角M-BP-C的余弦值.

分析 (1)推导出PM⊥CD,CD⊥AD,由此能证明CD⊥平面AMPD.
(2)以D为原点,DA,DP,DC依次为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角M-BP-C的余弦值.

解答 证明:(1)因为PM⊥平面CDM,且CD?平面CDM,
所以PM⊥CD,
又ABCD是正方形,所以CD⊥AD,
而梯形AMPD中PM与AD相交,
所以CD⊥平面AMPD.
解:(2)∵CD⊥平面AMPD,则CD⊥PD,CD⊥AD,
又PD∥MA,MA⊥AD,
∴PD⊥AD,
以D为原点,DA,DP,DC依次为x,y,z轴,建立空间直角坐标系,
设MA=$\frac{1}{2}$PD=1,AD=a,
则A(a,0,0),M(a,1,0),B(a,0,a),C(0,0,a),P(0,2,0),
$\overrightarrow{PM}$=(a,-1,0),$\overrightarrow{BC}$=(-a,0,0),
由BC与PM所成角为45°,
得cos<$\overrightarrow{PM},\overrightarrow{BC}$>=$\frac{{a}^{2}}{\sqrt{{a}^{2}+1}•|a|}$=$\frac{\sqrt{2}}{2}$,解得a=1,
∵$\overrightarrow{BP}$=(-1,2,-1),$\overrightarrow{PM}$=(1,-1,0),
设平面NBP的法向量$\overrightarrow{{n}_{1}}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BP}=-x+2y-z=0}\\{\overrightarrow{n}•\overrightarrow{PM}=x-y=0}\end{array}\right.$,取x=1,得$\overrightarrow{{n}_{1}}$=(1,1,1),
$\overrightarrow{BC}$=(-1,0,0),$\overrightarrow{BP}$=(-1,2,-1),
设平面CBP的法向量$\overrightarrow{{n}_{2}}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}•\overrightarrow{BC}=-a=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{BP}=-a+2b-c=0}\end{array}\right.$,取b=1,得$\overrightarrow{{n}_{2}}$=(0,1,2),
设二面角M-BP-C的平面角为θ,
则cosθ=-$\frac{|\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}|}{|\overrightarrow{{n}_{1}}|•|\overrightarrow{{n}_{2}}|}$=-$\frac{3}{\sqrt{3}•\sqrt{5}}$=-$\frac{\sqrt{15}}{5}$.
∴二面角M-BP-C的余弦值为-$\frac{\sqrt{15}}{5}$.

点评 本题考查面面垂直的证明,考查二面角的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知过抛物线y2=2px(p>0)的焦点,斜率为$2\sqrt{2}$的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且$|AB|=\frac{9}{2}$.
(1)求该抛物线的方程;
(2)过抛物线上的一个点M(1,2)作两条垂直的直线MP,MQ分别交抛物线于P,Q两点,试问:直线PQ是否过定点,如果过,请求出来,不过,请说明理由.
(3)求原点O到直线PQ的最大距离为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.对于任意两个正实数a,b,定义a*b=λ×$\frac{a}{b}$.其中常数λ∈($\frac{\sqrt{2}}{2}$,1),“×”是通常的实数乘法运算,若a≥b>0,a*b与b*a都是集合{x|x=$\frac{n}{2}$,n∈Z}中的元素,则a*b=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C所对的边分别为a,b,c,且$2asinA=({2b+\sqrt{2}c})sinB+({2c+\sqrt{2}b})sinC$.
(1)求A的大小;
(2)若$a=3\sqrt{10},b=3\sqrt{2}$,D是BC的中点,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数$f(x)=\left\{{\begin{array}{l}{x\;({x≥0})}\\{{x^2}\;({x<0})}\end{array}}\right.$,则f (f(-3)) 的值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)是定义在R上的偶函数,且对任意x∈R,都有f(x-1)=f(x+3).当x∈[4,5]时,f(x)=2x+1,设函数f(x)在区间[-2,0]上的反函数为f-1(x),则f-1(19)的值为(  )
A.-log23B.-2log23C.1-log23D.3-2log23

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设f(x)=$\left\{\begin{array}{l}{e^x},x<2\\{log_3}(x-1),x≥2.\end{array}$,则f(f(f(10)))的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若关于x的不等式x2+ax-2>0在区间[1,2]上有解,则实数a的取值范围为(  )
A.(-∞,-1)B.(-∞,1)C.(1,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠B=∠C,且$7{a^2}+{b^2}+{c^2}=4\sqrt{3}$,求△ABC的面积的最大值.

查看答案和解析>>

同步练习册答案