精英家教网 > 高中数学 > 题目详情
12.若关于x的不等式x2+ax-2>0在区间[1,2]上有解,则实数a的取值范围为(  )
A.(-∞,-1)B.(-∞,1)C.(1,+∞)D.(-1,+∞)

分析 用分离常数法得出不等式a>$\frac{2}{x}$-x在x∈[1,2]上成立,根据函数f(x)=$\frac{2}{x}$-x在x∈[1,2]上的单调性,即可求出a的取值范围.

解答 解:关于x的不等式x2+ax-2>0在区间[1,2]上有解,
∴ax>2-x2在x∈[1,2]上有解,
即a>$\frac{2}{x}$-x在x∈[1,2]上成立;
设函数f(x)=$\frac{2}{x}$-x,x∈[1,2],
∴f′(x)=-$\frac{2}{{x}^{2}}$-1<0恒成立,
∴f(x)在x∈[1,2]上是单调减函数,
且f(x)的值域为[-1,1],
要a>$\frac{2}{x}$-x在x∈[1,2]上有解,则a>-1,
即实数a的取值范围为(-1,+∞).
故选:D.

点评 本题考查了不等式的解法与应用问题,也考查了函数的图象与性质的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某天数学课上,你突然惊醒,发现黑板上有如下内容:
例:求x3-3x,x∈[0,+∞)的最小值.解:利用基本不等式a+b+c≥3$\root{3}{abc}$,得到x3+1+1≥3x,于是x3-3x=x3+1+1-3x-2≥3x-3x-2=-2,当且仅当x=1时,取到最小值-2
(1)老师请你模仿例题,研究x4-4x,x∈[0,+∞)上的最小值;
(提示:a+b+c+d≥4$\root{4}{abcd}$)
(2)研究$\frac{1}{9}$x3-3x,x∈[0,+∞)上的最小值;
(3)求出当a>0时,x3-ax,x∈[0,+∞)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四边形ABCD是正方形,PD∥MA,MA⊥AD,PM⊥平面 CDM,MA=$\frac{1}{2}$PD=1
(1)求证:平面ABCD⊥平面AMPD
(2)若BC与PM所成角为45°,求二面角M-BP-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点M(2,-3,1)关于原点对称的对称点为N,则|MN|等于(  )
A.2$\sqrt{13}$B.2$\sqrt{14}$C.52D.56

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左,右焦点分别是F1,F2,且离心率为$\frac{1}{2}$,点P为椭圆上一动点,△F1PF2内切圆面积的最大值是$\frac{π}{3}$.
(1)求椭圆C的方程;
(2)A是椭圆C的左顶点,斜率为k(k>0)的直线交C于A.M两点,点N在C上,MA⊥NA,且|AM|=|AN|.求△AMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在R上的函数f(x)对任意两个不相等实数a、b,且a<b总有f(a)<f(b)成立,则必有(  )
A.f(x)先增加后减少B.f(x)先减少后增加C.f(x)在R上是增函数D.f(x)在R上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=f(x)在定义域R上是增函数,且f(a+1)<f(2a),则a的取值范围是a>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a=2${\;}^{-\frac{1}{3}}$,b=(2${\;}^{lo{g}_{2}3}$)${\;}^{-\frac{1}{2}}$,c=cos50°cos10°+cos140°sin170°,则实数a,b,c的大小关系是(  )
A.a>c>bB.b>c>aC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线$l:\frac{x}{2}+\frac{y}{3}=1$的斜率为(  )
A.$-\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{2}{3}$D.$-\frac{3}{2}$

查看答案和解析>>

同步练习册答案