精英家教网 > 高中数学 > 题目详情
19.直线$l:\frac{x}{2}+\frac{y}{3}=1$的斜率为(  )
A.$-\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{2}{3}$D.$-\frac{3}{2}$

分析 利用直线方程直接求解直线的斜率即可.

解答 解:直线$l:\frac{x}{2}+\frac{y}{3}=1$的斜截式方程为:y=$-\frac{3}{2}$x+3,直线的斜率为:$-\frac{3}{2}$.
故选:D.

点评 本题考查直线方程的应用,斜率的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若关于x的不等式x2+ax-2>0在区间[1,2]上有解,则实数a的取值范围为(  )
A.(-∞,-1)B.(-∞,1)C.(1,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠B=∠C,且$7{a^2}+{b^2}+{c^2}=4\sqrt{3}$,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=x3+ax2-ax+m(a∈R,m∈R).
(Ⅰ)若函数f(x)在[-2,0]上是减函数,求实数a的取值范围;
(Ⅱ)若对任意的a∈[3,6],不等式f(x)≤0在x∈[-2,0]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z满足(1+3i)z=10,则z=(  )
A.-1-3iB.1+3iC.-1+3iD.1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图正方体ABCD-A1B1C1D1外接球O,过点O作一平面,则截面图形不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知奇函数y=f(x)满足:f(x)=f(x+2),且当x∈(0,1)时,f(x)=2x-1,则f(-4.5)=(  )
A.-2B.-1C.$-\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C:(x-2)2+y2=3.
(Ⅰ)若过定点(-1,0)且倾斜角α=30°的直线l与圆C相交于A,B两点,求线段AB的中点P的坐标;
(Ⅱ)从圆C外一点P作圆C的一条切线,切点为M,O为坐标原点,且|PM|=|PO|,求使|PM|最小的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合M={x|y=log2(x+6)},N={x|x-4≥2},则M∩N=(  )
A.(-3,2]B.(-6,+∞)C.[6,+∞)D.[-3,+∞)

查看答案和解析>>

同步练习册答案