精英家教网 > 高中数学 > 题目详情
14.已知复数z满足(1+3i)z=10,则z=(  )
A.-1-3iB.1+3iC.-1+3iD.1-3i

分析 由复数z满足(1+3i)z=10,得$z=\frac{10}{1+3i}$,然后利用复数代数形式的乘除运算化简复数z,则答案可求.

解答 解:由复数z满足(1+3i)z=10,
得$z=\frac{10}{1+3i}$=$\frac{10(1-3i)}{(1+3i)(1-3i)}=1-3i$,
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左,右焦点分别是F1,F2,且离心率为$\frac{1}{2}$,点P为椭圆上一动点,△F1PF2内切圆面积的最大值是$\frac{π}{3}$.
(1)求椭圆C的方程;
(2)A是椭圆C的左顶点,斜率为k(k>0)的直线交C于A.M两点,点N在C上,MA⊥NA,且|AM|=|AN|.求△AMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设等差数列{an}的前n项和为Sn,且a1>0,a2+a9>0,a5a6<0,则满足Sn>0的最大自然数n的值为(  )
A.5B.6C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若变量x,y满足约束条件$\left\{\begin{array}{l}x+y≤6\\ x-y≥0\\ y≥0\end{array}\right.$,则z=x+3y的最大值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数),曲线C2的直角坐标方程为x2+(y-1)2=1,以O为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求C1和C2的极坐标方程;
(Ⅱ)已知射线l1:θ=α(0<α<$\frac{π}{2}$),将l1逆时针旋转$\frac{π}{6}$得到l2:θ=α+$\frac{π}{6}$,且l1与C1交于O,P两点,l2与C2交于O,Q两点,求|OP|•|OQ|取最大值时点P的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线$l:\frac{x}{2}+\frac{y}{3}=1$的斜率为(  )
A.$-\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{2}{3}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题错误的是(  )
A.若α,β垂直于同一平面,则α与β可能相交
B.若m,n平行于同一平面,则m与n可能异面
C.若m,n不平行,则m与n不可能垂直于同一平面
D.若α,β不平行,则在α内不存在与β平行的直线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=f(x)的图象在点(2,f(2))处的切线方程为x+2y+1=0,则f(2)-2f′(2)的值为(  )
A.$\frac{1}{2}$B.1C.-1D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若点P是曲线y=2x-ex上任意一点,则点P到直线y=x的最小距离为(  )
A.1B.$\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案