分析 (1)由题意可知:由e=$\frac{c}{a}$=$\frac{1}{2}$,则a=2c,由△F1PF2的面积为S=$\frac{1}{2}$r(丨PF1丨+丨PF2丨+丨F1F2丨)=$\frac{1}{2}$r(2a+2c),当S最大,则r最大,由πr2=$\frac{π}{3}$,解得:r=$\frac{\sqrt{3}}{3}$,则Smax=$\frac{1}{2}$•2c•b=$\frac{1}{2}$•$\frac{\sqrt{3}}{3}$•(2a+2c),则bc=$\frac{\sqrt{3}}{3}$(a+c),即b=$\sqrt{3}$,由a2=b2+c2,则a=2,b=1,即可求得椭圆的方程;
(2)由题意可知:设y=k(x+2),代入椭圆方程,由韦达定理及弦长公式丨AM丨,丨AN丨由|AM|=|AN|,即求得k的值,由三角形的面积公式S=$\frac{1}{2}{|{AM}|^2}=\frac{1}{2}{({\sqrt{1+1}•\frac{12}{3+4}})^2}=\frac{144}{49}$.
解答 解:(1)由题意可知:椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦点在x轴,
由e=$\frac{c}{a}$=$\frac{1}{2}$,则a=2c,
设△F1PF2内切圆半径为r,
由△F1PF2的面积为S=$\frac{1}{2}$r(丨PF1丨+丨PF2丨+丨F1F2丨)=$\frac{1}{2}$r(2a+2c)
∴当S最大,则r最大,
当P为椭圆上下顶点时,△F1PF2的面积最大,其内切圆面积取得最大值,
∵πr2=$\frac{π}{3}$,解得:r=$\frac{\sqrt{3}}{3}$,
△F1PF2的面积最大值Smax=$\frac{1}{2}$•2c•b=$\frac{1}{2}$•$\frac{\sqrt{3}}{3}$•(2a+2c),
整理得:bc=$\frac{\sqrt{3}}{3}$(a+c),
则bc=$\sqrt{3}$c,解得:b=$\sqrt{3}$
由a2=b2+c2,则a=2,b=1,
∴椭圆的标准方程为:$\frac{x^2}{4}+\frac{y^2}{3}=1$;
(2)则直线AM的方程为:y=k(x+2).
联立$\left\{\begin{array}{l}\frac{x^2}{4}+\frac{y^2}{3}=1\\ y=k({x+2})\end{array}\right.$,整理得,(3+4k2)x2+16k2x+16k2-12=0,
解得:x=-2或$x=-\frac{{8{k^2}-6}}{{3+4{k^2}}}$,
则$|{AM}|=\sqrt{1+{k^2}}|{-\frac{{8{k^2}-6}}{{3+4{k^2}}}+2}|=\sqrt{1+{k^2}}•\frac{12}{{3+4{k^2}}}$,
∵AM⊥AN,
∴$|{AN}|=\sqrt{1+{{({-\frac{1}{k}})}^2}}•\frac{12}{{3+4•{{({1-\frac{1}{k}})}^2}}}=\sqrt{1+{k^2}}•\frac{12}{{3|k|+\frac{4}{|k|}}}$,
∵|AM|=|AN|,k>0,
∴$\sqrt{1+{k^2}}•\frac{12}{{3+4{k^2}}}=\sqrt{1+{k^2}}•\frac{12}{{3k+\frac{4}{k}}}$,
整理得(k-1)(4k2-k+4)=0,4k2-k+4=0无实根,
∴k=1.
△AMN的面积为S=$\frac{1}{2}{|{AM}|^2}=\frac{1}{2}{({\sqrt{1+1}•\frac{12}{3+4}})^2}=\frac{144}{49}$.
△AMN的面积$\frac{144}{49}$.
点评 本题考查椭圆的标准方程及简单几何性质的应用,考查焦点三角形的面积公式及最值,三角形内切圆面积的最值,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1) | B. | (-∞,1) | C. | (1,+∞) | D. | (-1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π${\;}^{\frac{3m}{2n}}$(m,n∈N+) | B. | π${\;}^{-\frac{3m}{2n}}$(m,n∈N+) | C. | π${\;}^{\frac{2n}{3m}}$(m,n∈N+) | D. | π${\;}^{-\frac{2n}{3m}}$(m,n∈N+) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{4π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{π}{3}$或$\frac{4π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com