精英家教网 > 高中数学 > 题目详情
7.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左,右焦点分别是F1,F2,且离心率为$\frac{1}{2}$,点P为椭圆上一动点,△F1PF2内切圆面积的最大值是$\frac{π}{3}$.
(1)求椭圆C的方程;
(2)A是椭圆C的左顶点,斜率为k(k>0)的直线交C于A.M两点,点N在C上,MA⊥NA,且|AM|=|AN|.求△AMN的面积.

分析 (1)由题意可知:由e=$\frac{c}{a}$=$\frac{1}{2}$,则a=2c,由△F1PF2的面积为S=$\frac{1}{2}$r(丨PF1丨+丨PF2丨+丨F1F2丨)=$\frac{1}{2}$r(2a+2c),当S最大,则r最大,由πr2=$\frac{π}{3}$,解得:r=$\frac{\sqrt{3}}{3}$,则Smax=$\frac{1}{2}$•2c•b=$\frac{1}{2}$•$\frac{\sqrt{3}}{3}$•(2a+2c),则bc=$\frac{\sqrt{3}}{3}$(a+c),即b=$\sqrt{3}$,由a2=b2+c2,则a=2,b=1,即可求得椭圆的方程;
(2)由题意可知:设y=k(x+2),代入椭圆方程,由韦达定理及弦长公式丨AM丨,丨AN丨由|AM|=|AN|,即求得k的值,由三角形的面积公式S=$\frac{1}{2}{|{AM}|^2}=\frac{1}{2}{({\sqrt{1+1}•\frac{12}{3+4}})^2}=\frac{144}{49}$.

解答 解:(1)由题意可知:椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦点在x轴,
由e=$\frac{c}{a}$=$\frac{1}{2}$,则a=2c,
设△F1PF2内切圆半径为r,
由△F1PF2的面积为S=$\frac{1}{2}$r(丨PF1丨+丨PF2丨+丨F1F2丨)=$\frac{1}{2}$r(2a+2c)
∴当S最大,则r最大,
当P为椭圆上下顶点时,△F1PF2的面积最大,其内切圆面积取得最大值,
∵πr2=$\frac{π}{3}$,解得:r=$\frac{\sqrt{3}}{3}$,
△F1PF2的面积最大值Smax=$\frac{1}{2}$•2c•b=$\frac{1}{2}$•$\frac{\sqrt{3}}{3}$•(2a+2c),
整理得:bc=$\frac{\sqrt{3}}{3}$(a+c),
则bc=$\sqrt{3}$c,解得:b=$\sqrt{3}$
由a2=b2+c2,则a=2,b=1,
∴椭圆的标准方程为:$\frac{x^2}{4}+\frac{y^2}{3}=1$;
(2)则直线AM的方程为:y=k(x+2).
联立$\left\{\begin{array}{l}\frac{x^2}{4}+\frac{y^2}{3}=1\\ y=k({x+2})\end{array}\right.$,整理得,(3+4k2)x2+16k2x+16k2-12=0,
解得:x=-2或$x=-\frac{{8{k^2}-6}}{{3+4{k^2}}}$,
则$|{AM}|=\sqrt{1+{k^2}}|{-\frac{{8{k^2}-6}}{{3+4{k^2}}}+2}|=\sqrt{1+{k^2}}•\frac{12}{{3+4{k^2}}}$,
∵AM⊥AN,
∴$|{AN}|=\sqrt{1+{{({-\frac{1}{k}})}^2}}•\frac{12}{{3+4•{{({1-\frac{1}{k}})}^2}}}=\sqrt{1+{k^2}}•\frac{12}{{3|k|+\frac{4}{|k|}}}$,
∵|AM|=|AN|,k>0,
∴$\sqrt{1+{k^2}}•\frac{12}{{3+4{k^2}}}=\sqrt{1+{k^2}}•\frac{12}{{3k+\frac{4}{k}}}$,
整理得(k-1)(4k2-k+4)=0,4k2-k+4=0无实根,
∴k=1.
△AMN的面积为S=$\frac{1}{2}{|{AM}|^2}=\frac{1}{2}{({\sqrt{1+1}•\frac{12}{3+4}})^2}=\frac{144}{49}$.
△AMN的面积$\frac{144}{49}$.

点评 本题考查椭圆的标准方程及简单几何性质的应用,考查焦点三角形的面积公式及最值,三角形内切圆面积的最值,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下列写法正确的是(  )
A.∅∈{0}B.∅⊆{0}C.0?∅D.∅∉∁R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数$f(x)=\left\{{\begin{array}{l}{x\;({x≥0})}\\{{x^2}\;({x<0})}\end{array}}\right.$,则f (f(-3)) 的值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设f(x)=$\left\{\begin{array}{l}{e^x},x<2\\{log_3}(x-1),x≥2.\end{array}$,则f(f(f(10)))的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直线l过点P(0,2)且与直线2x-y=0平行,则直线l在x轴上的截距为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若关于x的不等式x2+ax-2>0在区间[1,2]上有解,则实数a的取值范围为(  )
A.(-∞,-1)B.(-∞,1)C.(1,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知b-2n3m(b>0,m,n∈N+),则b=(  )
A.π${\;}^{\frac{3m}{2n}}$(m,n∈N+B.π${\;}^{-\frac{3m}{2n}}$(m,n∈N+C.π${\;}^{\frac{2n}{3m}}$(m,n∈N+D.π${\;}^{-\frac{2n}{3m}}$(m,n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=sin(2x+φ),φ∈(0,2π)的部分图象如图所示,则φ的值为(  )
A.$\frac{π}{3}$B.$\frac{4π}{3}$C.$\frac{5π}{6}$D.$\frac{π}{3}$或$\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z满足(1+3i)z=10,则z=(  )
A.-1-3iB.1+3iC.-1+3iD.1-3i

查看答案和解析>>

同步练习册答案