精英家教网 > 高中数学 > 题目详情
某校为了解高一学生12月份的阅读情况,抽查并统计了100名同学的某一周阅读时间,绘制了频率分布直方图(如图所示),那么这100名学生中阅读时间在[8,12]小时内的人数为
 
考点:频率分布直方图
专题:概率与统计
分析:根据频率分布直方图,利用频率=
频数
样本容量
,求出对应的频数即可.
解答: 解:根据频率分布直方图,得;
阅读时间在[8,12]小时内的频率为(0.14+0.05)×2=0.38,
∴阅读时间在[8,12]小时内的人数为100×0.38=38.
故答案为:38.
点评:本题考查了频率、频数与样本容量的应用问题,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

曲线y=x4上的点到直线x-2y-1=0的距离d的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从某校高一期末数学考试成绩中,随机抽取了60名学生的成绩得到频率分布直方图,如图所示.根据频率分布直方图,估计该次数学考试的平均分为(  )
A、46B、82C、92D、102

查看答案和解析>>

科目:高中数学 来源: 题型:

为了调查某校学生体质健康达标情况,现采用随机抽样的方法从该校抽取了m名学生进行体育测试.根据体育测试得到了这m名学生各项平均成绩(满分100分),按照以下区间分为七组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100),并得到频率分布直方图(如图),己知测试平均成绩在区间[30,60)有20人.
(I)求m的值及中位数n;
(Ⅱ)若该校学生测试平均成绩小于n,则学校应适当增加体育活动时间.根据以上抽样调查数据,该校是否需要增加体育活动时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则该几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在一封闭的正方体容器内装满水,M、N分别是AA1与C1D1的中点,由于某种原因,在D、M、N三点处各有一个小洞,为此容器内存水最多,问应将此容器如何放置?此时水的上表面的形状怎样?

查看答案和解析>>

科目:高中数学 来源: 题型:

以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,已知曲线C的参数方程为
x=
2
cost
y=
2
sint
(t为参数).
(1)曲线C在点(1,1)处的切线为l,求l的极坐标方程;
(2)点A的极坐标为(2
2
π
4
),且当参数t∈[0,π]时,过点A的直线m与曲线C有两个不同的交点,试求直线m的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
是两个不共线的向量,已知向量
AB
=2
e1
+tanα•
e2
CB
=
e1
-
5
4
e2
CD
=2
e1
-
e2
,若A,B,D三点共线,则
2sinα-cosα
sinα+cosα
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形ABC中,AB=AC,BC=4,∠BAC=90°,
BE
=3
EC
,若P是BC边上的动点,则
AP
AE
的取值范围是
 

查看答案和解析>>

同步练习册答案