精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=mex﹣x﹣1(其中e为自然对数的底数,),若f(x)=0有两根x1 , x2且x1<x2 , 则函数y=(e ﹣e )( ﹣m)的值域为

【答案】(﹣∞,0)
【解析】解:由题意f函数f(x)=mex﹣x﹣1,(x)=0有两根x1 , x2且x1<x2 相减可得m( )=x2﹣x1
即有y= ﹣m( )= ﹣(x2﹣x1
= ﹣(x2﹣x1),
令x2﹣x1=t(t>0), ﹣t(t>0),
又g′(t)= <0,
∴g(t)在(0,+∞)上单调递减,
∴g(t)<g(0)=0,
∴g(t)∈(﹣∞,0),
∴y=( )( ﹣m)的值域为(﹣∞,0);
所以答案是:(﹣∞,0).
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数底数.

(1)当时,求函数在点处的切线方程;

(2)讨论函数的单调性,并写出相应的单调区间;

(3)已知,若函数对任意都成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若是两个相交平面,则在下列命题中,真命题的序号为 .(写出所有真命题的序号)

若直线,则在平面内,一定不存在与直线平行的直线.

若直线,则在平面内,一定存在无数条直线与直线垂直.

若直线,则在平面内,不一定存在与直线垂直的直线.

若直线,则在平面内,一定存在与直线垂直的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图像如图所示,则下列结论中一定成立的是(
A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(﹣2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(﹣2)
D.函数f(x)有极大值f(﹣2)和极小值f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,F1F2分别是椭圆的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.

(Ⅰ)求椭圆C的离心率;

(Ⅱ)已知△AF1B的面积为,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,且|kb|=| kb|(k>0).

(Ⅰ)用k表示数量积

(Ⅱ)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若曲线在点处的切线与直线垂直,求的值;

(Ⅱ)若函数存在极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=Asin(ωx+)(A>0,ω>0)在x∈(0,7π)内取到一个最大值和一个最小值,且当x=π时,y有最大值3,当x=6π时,y有最小值﹣3.
(1)求此函数解析式;
(2)写出该函数的单调递增区间;
(3)是否存在实数m,满足不等式Asin( )>Asin( )?若存在,求出m值(或范围),若不存在,请说明理由.

查看答案和解析>>

同步练习册答案