精英家教网 > 高中数学 > 题目详情
1.已知函数$f(x)=\left\{\begin{array}{l}{log_3}x,\;\;x>0\\{2^x},x≤0.\end{array}\right.$则$f[{f({\frac{1}{27}})}]$的值为$\frac{1}{8}$.

分析 直接利用分段函数,由里及外逐步求解即可.

解答 解:函数$f(x)=\left\{\begin{array}{l}{log_3}x,\;\;x>0\\{2^x},x≤0.\end{array}\right.$则$f[{f({\frac{1}{27}})}]$=f(log3$\frac{1}{27}$)=f(-3)=2-3=$\frac{1}{8}$.
故答案为:$\frac{1}{8}$.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上一点P到左焦点的距离为6,则点P到右焦点的距离是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知P为△ABC所在平面内一点,且满足$\overrightarrow{AP}$=λ($\overrightarrow{AB}$+$\overrightarrow{AC}$),$\overrightarrow{BP}$=μ$\overrightarrow{BC}$(λ、μ∈R),则λ+μ=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若椭圆的对称轴为坐标轴,焦点F1(-3,0),$e=\frac{3}{5}$,则椭圆的方程为$\frac{x^2}{25}+\frac{y^2}{16}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}是等差数列,且a2+a5+a8=π,则sina5=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.关于x的方程x2+2(a-1)x+2a+6=0的两根为α,β,且满足0<α<1<β,则a的取值范围是$(-3,-\frac{5}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知定义在R上的函数f(x)=ln(e2x+1)+ax(a∈R)是偶函数.
(1)求实数a的值;
(2)判断f(x)在[0,+∞)上的单调性,并用定义法证明;
(3)若f(x2+$\frac{1}{{x}^{2}}$)>f(mx+$\frac{m}{x}$)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=x3-3ax+3a在(0,1)内有极小值,则a的取值范围0<a<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设二次函数f(x)=ax2+bx+c(a>b>c),已知f(1)=0,且存实数m,使f(m)=-a.
(1)试推断$\frac{b}{2a}$与0的大小,并说明理由;
(2)设g(x)=f(x)+bx,对于x1,x2∈R,且x1≠x2,若g(x1)=g(x2)=0,求|x1-x2|的取值范围;
(3)求证:f(m+3)>0.

查看答案和解析>>

同步练习册答案