精英家教网 > 高中数学 > 题目详情
12.已知P为△ABC所在平面内一点,且满足$\overrightarrow{AP}$=λ($\overrightarrow{AB}$+$\overrightarrow{AC}$),$\overrightarrow{BP}$=μ$\overrightarrow{BC}$(λ、μ∈R),则λ+μ=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-1D.1

分析 利用向量的平行四边形法则、向量共线定理即可得出.

解答 解:∵点P满足$\overrightarrow{AP}$=λ($\overrightarrow{AB}$+$\overrightarrow{AC}$),$\overrightarrow{BP}$=μ$\overrightarrow{BC}$(λ、μ∈R),
∴点P是线段BC的中点,
∴$μ=\frac{1}{2}$=λ,
∴λ+μ=1.

点评 本题考查了向量的平行四边形法则、向量共线定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$=($\sqrt{3}$sinωx,cosωx),$\overrightarrow{b}$=(cosωx,-cosωx),其中ω>0,函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+$\frac{1}{2}$的图象的两相邻对称轴间的距离为$\frac{π}{4}$
(Ⅰ)求ω的值
(Ⅱ)若x∈(0,$\frac{π}{3}$],且f(x)=m有且仅有一个实根,求实数m的值
(Ⅲ)若x∈($\frac{7π}{24}$,$\frac{5π}{12}$),f(x)=-$\frac{3}{5}$,求cos4x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点与抛物线y2=8x的焦点相同,离心率为$\frac{1}{2}$,则此椭圆的方程为(  )
A.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1C.$\frac{{x}^{2}}{48}$+$\frac{{y}^{2}}{64}$=1D.$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{48}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=$\frac{lnx}{x}$,则(  )
A.x=e是f(x)的极大值点B.x=e时f(x)的极小值点
C.x=1是f(x)的极大值点D.x=1是f(x)的极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知复数x2-6x+5+(x-2)i在复平面内对应的点位于第二象限,则实数x的取值范围是(2,5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,A=60°,AC=3,AB=2,那么BC的长度为$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.抛物线y=-mx2的准线方程是y=-3,则m的值为(  )
A.$\frac{1}{12}$B.12C.$-\frac{1}{12}$D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数$f(x)=\left\{\begin{array}{l}{log_3}x,\;\;x>0\\{2^x},x≤0.\end{array}\right.$则$f[{f({\frac{1}{27}})}]$的值为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.计算sin(-$\frac{π}{6}$)+cos$\frac{11π}{3}$+tan(-$\frac{5π}{3}$)=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案