精英家教网 > 高中数学 > 题目详情
7.已知复数x2-6x+5+(x-2)i在复平面内对应的点位于第二象限,则实数x的取值范围是(2,5).

分析 利用复数的几何意义,推出不等式求解即可.

解答 解:复数x2-6x+5+(x-2)i在复平面内对应的点位于第二象限,
可得$\left\{\begin{array}{l}{x}^{2}-6x+5<0\\ x-2>0\end{array}\right.$,
解得x∈(2,5).
故答案为:(2,5).

点评 本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=-x2-2(-1+a)x+1,在x∈[2,+∞]时单调递减,则a≥-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A、B为椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点,F为椭圆的右焦点,且AF=3,离心率e=$\frac{1}{2}$,又P是椭圆上异于A、B的任意一点,直线AP、BP分别交直线l:x=m(m>2)于M、N两点,l交x轴于C点.
(1)求椭圆的标准方程;
(2)当PF∥l时,求直线AM的方程;
(3)是否存在实数m,使得以MN为直径的圆过点F?若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知|1-z|+z=10-3i(i为虚数单位).
(1)求z;
(2)若z2+mz+n=1-3i,求实数m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\frac{1}{2}$x2-x-2lnx,则函数f(x)的单调递增区间为(  )
A.(-∞,-1)(2,+∞)B.(2,+∞)C.(-∞,-1)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知P为△ABC所在平面内一点,且满足$\overrightarrow{AP}$=λ($\overrightarrow{AB}$+$\overrightarrow{AC}$),$\overrightarrow{BP}$=μ$\overrightarrow{BC}$(λ、μ∈R),则λ+μ=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的各项均为正数,a1=3,其前n项和为Sn,数列{bn}为等比数列,且b1=1,b2S2=16,b3S3=60.求:
(Ⅰ)数列{an}与{bn}的通项公式;
(Ⅱ)$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}是等差数列,且a2+a5+a8=π,则sina5=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为90°,且$\overrightarrow{c}$=2$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{d}$=k$\overrightarrow{a}$-2$\overrightarrow{b}$,若$\overrightarrow{c}$⊥$\overrightarrow{d}$,则实数k的值为(  )
A.6B.-6C.3D.-3

查看答案和解析>>

同步练习册答案