精英家教网 > 高中数学 > 题目详情
17.在△ABC中,A=60°,AC=3,AB=2,那么BC的长度为$\sqrt{7}$.

分析 由已知及余弦定理即可求值.

解答 解:∵在△ABC中,A=60°,AC=3,AB=2,
∴由余弦定理可得:BC2=AC2+AB2-2AC•AB•cosA=9+4-2×3×2×cos60°=7.
∴BC=$\sqrt{7}$.
故答案为:$\sqrt{7}$.

点评 本题主要考查了余弦定理的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.现有5名同学参加3个不同的比赛项目,每名同学任选一项参加比赛,若ξ表示没有任何同学选报的项目的个数,则P(ξ=1)=$\frac{18}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知实数x,y,z满足3x+2y+z=1,求x2+2y2+3z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线l过抛物线C:x2=4y的焦点且斜率为$\frac{3}{4}$,则直线l与曲线C所围成的封闭图形的面积为(  )
A.$\frac{65}{8}$B.$\frac{33}{8}$C.$\frac{125}{24}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知P为△ABC所在平面内一点,且满足$\overrightarrow{AP}$=λ($\overrightarrow{AB}$+$\overrightarrow{AC}$),$\overrightarrow{BP}$=μ$\overrightarrow{BC}$(λ、μ∈R),则λ+μ=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆x2+$\frac{{y}^{2}}{4}$=1(y≥0)和抛物线y2=-2$\sqrt{3}$x,斜率为$\sqrt{2}$的直线与椭圆相切且与抛物线相交于A、B两点,则|AB|=3$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若椭圆的对称轴为坐标轴,焦点F1(-3,0),$e=\frac{3}{5}$,则椭圆的方程为$\frac{x^2}{25}+\frac{y^2}{16}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.关于x的方程x2+2(a-1)x+2a+6=0的两根为α,β,且满足0<α<1<β,则a的取值范围是$(-3,-\frac{5}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(1,1),t∈R.,向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ.
(Ⅰ)求cosθ;
(Ⅱ)求|$\overrightarrow{a}$+t$\overrightarrow{b}$|的最小值及相应的t值.

查看答案和解析>>

同步练习册答案