| A. | [-1,1] | B. | [1,+∞) | C. | [2,+∞) | D. | (-∞,-2]∪[2,+∞) |
分析 利用构造法g(x)=f(x)-x2,推出g(x)为奇函数,判断g(x)的单调性,即可求得实数m的取值范围.
解答 解:∵f(-x)+f(x)=x2,∴f(x)-x2+f(-x)=0,
令g(x)=f(x)-$\frac{1}{2}$x2,
则g(-x)+g(x)=f(-x)-$\frac{1}{2}$x2+f(x)-$\frac{1}{2}$x2=0,
∴函数g(x)为奇函数.
∵x∈(0,+∞)时,g′(x)=f′(x)-x<0,
故函数g(x)在(0,+∞)上是减函数,
故函数g(x)在(-∞,0)上也是减函数,
由f(0)=0,可得g(x)在R上是减函数.
f(2-m)+f(-m)-m2+2m-2≥0,则g(2-m)+$\frac{1}{2}$(2-m)2+f(-m)-$\frac{1}{2}$(-m)2-m2+2m-2≥0,
即g(2-m)+g(-m)≥0,即g(2-m)-g(m)≥0,
∴2-m≤m,解得m≥1
故选:B.
点评 本题考查导数的综合应用,考查函数奇偶性、单调性、导数的综合应用,考查分析问题解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 24 | B. | $\frac{49}{2}$ | C. | 25 | D. | $\frac{324}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | mx+m2y-1=0 | B. | x+y+3=0 | C. | x-y-3=0 | D. | x+y-3=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 可以小于0 | B. | 只能大于0 | C. | 可以为0 | D. | 只能小于0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{7}{2}$ | B. | $\frac{15}{4}$ | C. | 10 | D. | -10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com