精英家教网 > 高中数学 > 题目详情
已知点A(3,3),B(-1,5),直线y=ax+1与线段AB有公共点,则实数α应满足的条件是(  )
A、α∈[-4,
2
3
]
B、α≠-
1
2
C、α∈[-4,-
1
2
)∪(-
1
2
2
3
]
D、α∈(-∞,-4]∪[
2
3
,+∞)
考点:直线的斜率
专题:直线与圆
分析:直线恒过C(0,1),结合点A,B,算出BC、AC的斜率,a满足的是大于AC的斜率,小于BC的斜率.
解答: 解:直线y=ax+1恒过C(0,1),
∵点A(3,3),B(-1,5),
∴kAC=
3-1
3-0
=
2
3

kBC=
5-1
-1-0
=-4,
∵直线y=ax+1与线段AB有公共点,
∴a∈(-∞,-4]∪[
2
3
,+∞).
故选:D.
点评:本题考查直线的斜率的取值范围的求法,是中档题,解题时要注意斜率公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等比数列{an}共有偶数项,且所有项之和是奇数项之和的3倍,前3项之积等于27,则这个等比数列的通项公式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={平面内的点(a,b)},N={f(x)|f(x)=acos3x+bsin3x},给出M到N的映射f:(a,b)→f(x)=acos3x+bsin3x.给出下列关于f:(-
2
2
)→f(x)的命题:
①f(x)=2sin(3x-
4
);
②其图象可由y=2sin3x向左平移
π
4
个单位得到;
③点(
4
,0)是其图象的一个对称中心;
④在x∈[
12
4
]上为减函数.
其中正确的命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y∈R,且满足y=
1
2
x2,求证:log2(2x+2y)>
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={x|
1
2
≤x≤3}
,函数f(x)=log2(ax2-2x+2)的定义域为Q.
(1)若实数a=-
3
2
,则P∩Q=
 

(2)若实数a<-6,则P∩Q=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个数列的通项公式为f(n),n∈N*,若7f(n)=f(n-1)(n≥2)且f(1)=3,则
lim
n→∞
[f(1)+f(2)+…+f(n)]等于(  )
A、
7
2
B、
3
7
C、-7
D、-
7
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面EAD⊥平面ABCD,△ADE是等边三角形,ABCD是矩形,AD=2,AB=2
2
,F、G分别是AB、AD的中点.
(1)求证:CF⊥平面EFG;
(2)若P为线段CE上一点,且
CP
=
1
3
CE
,求DP与平面EFG所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

f′(x0)=0是可导函数y=f(x)在点x=x0处有极值的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax2+b(a,b∈R).
(1)若a=1,函数f(x)的图象能否总在直线y=b的下方?说明理由;
(2)若函数f(x)在[0,2]上是增函数,x=2是方程f(x)=0的一个根,求证f(1)≤-2;
(3)若函数f(x)图象上任意不同的两点连线斜率小于1,求实数a的取值范围.

查看答案和解析>>

同步练习册答案