精英家教网 > 高中数学 > 题目详情
对于函数f(x),若对于任意的a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=
ex+t
ex+1
是“可构造三角形函数”,则实数t的取值范围是
 
考点:函数与方程的综合运用
专题:函数的性质及应用
分析:因对任意实数a、b、c,都存在以f(a)、f(b)、f(c)为三边长的三角形,则f(a)+f(b)>f(c)恒成立,将f(x)解析式用分离常数法变形,由均值不等式可得分母的取值范围,整个式子的取值范围由t-1的符号决定,故分为三类讨论,根据函数的单调性求出函数的值域,然后讨论k转化为f(a)+f(b)的最小值与f(c)的最大值的不等式,进而求出实数k 的取值范围.
解答: 解:由题意可得f(a)+f(b)>f(c)对于?a,b,c∈R都恒成立,
由于f(x)=
ex+t
ex+1
=1+
t-1
ex+1

①当t-1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,
满足条件.
②当t-1>0,f(x)在R上是减函数,1<f(a)<1+t-1=t,
同理1<f(b)<t,1<f(c)<t,
由f(a)+f(b)>f(c),可得 2≥t,解得1<t≤2.
③当t-1<0,f(x)在R上是增函数,t<f(a)<1,
同理t<f(b)<1,t<f(c)<1,
由f(a)+f(b)>f(c),可得 2t≥1,解得1>t≥
1
2

综上可得,
1
2
≤t≤2,
故实数t的取值范围是[
1
2
,2],
故答案为:[
1
2
,2]
点评:本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2ax3-9x2+6(a-2)x+2,a∈R.
(1)若函数f(x)在x=1处取得极值,求实数a的值;
(2)若a=2,求函数f(x)在区间[0,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员400人,每人每年可创利10万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.05万元,但公司需付下岗职员每人每年2万元的生活费,并且该公司正常运转所需人数不得小于现有职员的
3
4
,为获得最大的经济效益,该公司应裁员多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)=x3-
3
2
x2+a在[-1,1]上的最大值是2,那么f(x)在[-1,1]上的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(X)=
x2+a
ex
(x∈R)(e是自然对数的底数).
(1)当a=-15时,求f(x)的单调区间;
(2)若f(x)在区间[
1
e
,e]上是增函数,求实数a的取值范围;
(3)证明
1+12
e
+
1+22
e2
+
1+32
e3
+…+
1+n2
en
5n
4
e
对一切n∈N*恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l过点(3,4),且(-2,1)是它的一个方向向量,则直线l的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

与-
33
4
π终边相同的最小正角是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}是递减的等差数列,且a3+a9=10,a5•a7=16,则数列{an}的前n项和Sn的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ax-2(a>0,且a≠1)的图象必经过点
 

查看答案和解析>>

同步练习册答案